Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T01:29:28.895Z Has data issue: false hasContentIssue false

Effect of surface defects on the visible emission from ZnO nanoparticles

Published online by Cambridge University Press:  31 January 2011

Harish Kumar Yadav
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India
K. Sreenivas
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India
Vinay Gupta*
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India
S.P. Singh
Affiliation:
National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi-110012, India
R.S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, Puerto Rico 00931-3343
*
a)Address all correspondence to this author. e-mail: vgupta@physics.du.ac.in
Get access

Abstract

The luminescent property of ZnO nanoparticles prepared using the wet chemical method has been investigated. The ZnO nanoparticles in the range 5–10 nm exhibit hexagonal Wurtzite structure, and the photoluminescence (PL) spectrum at room temperature shows a broad visible luminescence band and insignificant near-bandgap emission. The broad green luminescence is dominant at both room and boiled off liquid-nitrogen temperature, while the ultraviolet band edge emission is strongly quenched. The prepared ZnO nanoparticles have residual intermediate compound on the surface in the form of an acetate group, which acts as defect centers for the emission of green luminescence. A trace amount of zinc hydroxide is observed in one of the samples and is found to further enhance the intensity of the green luminescence. Raman scattering studies on nanoparticles indicate that the acetate/hydroxyl groups are loosely bound on the surface and are not present in the interior of the ZnO crystal structure

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shen, X.P., Yuan, A.H., Hu, Y.M., Jiang, Y., Xu, Z.Hu, Z.: Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays. Nanotechnology 16, 2039 2005CrossRefGoogle ScholarPubMed
2Monroy, E., Omnes, F.Calle, F.: Wide-band gap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 18, R33 2003CrossRefGoogle Scholar
3Ryu, Y.R., Lee, T.S., Lubguman, J.A., White, H.W., Park, Y.S.Youn, C.J.: ZnO devices: Photodiodes and p-type field-effect transistors. Appl. Phys. Lett. 87, 153504 2005CrossRefGoogle Scholar
4Han, X., Wang, G., Wang, Q., Cao, L., Liu, R., Zou, B.Hou, J.G.: Ultraviolet lasing and time-resolved photoluminescence of well aligned ZnO nanorod arrays. Appl. Phys. Lett. 86, 223106 2005CrossRefGoogle Scholar
5Tian, Z.R., Voigt, J.A., Liu, J., Mckenzie, B., Mcdermott, M.J., Rodriguez, M.A., Konishi, H.Xu, H.: Complex and oriented ZnO nanostructures. Nat. Mater. 2, 821 2003CrossRefGoogle ScholarPubMed
6Wang, Z.L.: Zinc oxide nanostructures: Growth, properties and applications. J. Phys.: Condens. Matter 16, R829 2004Google Scholar
7Kumar, S., Gupta, V.Sreenivas, K.: Synthesis of photoconducting ZnO nano-needles using an unbalanced magnetron sputtered ZnO/Zn/ZnO multilayer structure. Nanotechnol. 16, 1167 2005CrossRefGoogle Scholar
8Gupta, V., Bhattacharya, P., Yuzuk, Y.I., Sreenivas, K.Katiyar, R.S.: Optical phonon modes in ZnO nanorods on Si prepared by pulsed laser deposition. J. Cryst. Growth 287, 39 2006CrossRefGoogle Scholar
9Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J.Morkoc, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 2005CrossRefGoogle Scholar
10Koch, U., Fojtik, A., Weller, H.Henglein, A.: Photochemistry of semiconductor colloids: Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem. Phys. Lett. 122, 507 1985CrossRefGoogle Scholar
11Spanhel, L.Anderson, M.A.: Semiconductor clusters in the sol-gel process: Quantized aggregation, gelation, and crystal growth in concentrated ZnO colloids. J. Am. Chem. Soc. 113, 2826 1991CrossRefGoogle Scholar
12Bahnemann, D.W., Kormann, C.Hoffmann, M.R.: Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study. J. Phys. Chem. 91, 3789 1987CrossRefGoogle Scholar
13Li, D., Leung, Y.H., Djurisic, A.B., Liu, Z.T., Xie, M.H., Shi, S.L., Xu, S.J.Chan, W.K.: Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Appl. Phys. Lett. 85, 1601 2004CrossRefGoogle Scholar
14Guo, L., Yang, S., Yang, C., Yu, P., Wang, J., Ge, W.Wong, G.K.L.: Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties. Appl. Phys. Lett. 76, 2901 2000CrossRefGoogle Scholar
15Vanheusden, K., Warren, W.L., Seager, C.H., Tallant, D.R., Voigt, J.A.Gnade, B.E.: Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 1996CrossRefGoogle Scholar
16Sakohara, S., Ishida, M.Anderson, M.A.: Visible luminescence and surface properties of nanosized ZnO colloids prepared by hydrolyzing zinc acetate. J. Phys. Chem. B 102, 10169 1998CrossRefGoogle Scholar
17Abdullah, M., Lenggoro, I.W., Okuyama, K.Shi, F.G.: In situ synthesis of polymer nanocomposite electrolytes emitting a high luminescence with a tunable wavelength. J. Phys. Chem. B 107, 1957 2003CrossRefGoogle Scholar
18Mahamuni, S., Borgohain, K., Bendre, B.S., Leppert, V.J.Risbud, S.H.: Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J. Appl. Phys. 85, 2861 1999CrossRefGoogle Scholar
19Zhou, H., Alves, H., Hofmann, D.M., Kriegseis, W., Meyer, B.K., Kaczmarczyk, G.Hoffmann, A.: Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure. Appl. Phys. Lett. 80, 210 2002CrossRefGoogle Scholar
20Jen, F.Y., Lu, Y.C., Chen, C.Y., Wang, H.C., Yang, C.C., Zhang, B.P.Segawa, Y.: Temperature-dependent exciton dynamics in a ZnO thin film. Appl. Phys. Lett. 87, 252117 2005CrossRefGoogle Scholar
21Yadav, H.K., Gupta, V., Sreenivas, K., Singh, S.P., Sundarakannan, B.Katiyar, R.S.: Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles. Phys. Rev. Lett. 97, 085502 2006CrossRefGoogle ScholarPubMed