Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T15:06:53.290Z Has data issue: false hasContentIssue false

The Effect of Ternary Addition on Structure and Stability of NbCr2 Laves Phases

Published online by Cambridge University Press:  31 January 2011

T. Takasugi
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
M. Yoshida
Affiliation:
Miyagi National College of Technology, Natori, Miyagi Prefecture, 981–1239, Japan
Get access

Abstract

The alloying effect on microstructure and stability of the NbCr2 Laves phases is investigated using x-ray diffraction (XRD) and transmission electron microscopy (TEM). In as-cast condition, the binary alloy as well as the ternary alloy containing V consisted of the C15 phase while the ternary alloys containing Mo, Ti, and W consisted of both the C14 (or C36) and the C15 phases, accompanied by a number of stacking faults and microtwins in their constituent phases. By a prolonged heat treatment at 1673 K, the retained C14 (or C36) phase is completely transformed to the C15 phase. However, their kinetics is slower in the sequence of the ternary alloys containing Mo > Ti > W. The alloying effect on the stability of the C15 (or the C14) phase and the associated transformation process is discussed on the basis of phase stability and kinetics.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Massalski, T. B., Murray, J. L., Bennett, L. H., and Baker, H., in Binary Alloy Phase Diagram (American Society for Metals, Metals Park, OH, 1986).Google Scholar
2.Thoma, D. J. and Perepezko, J. H., Mater. Sci. Eng. A156, 97 (1992).CrossRefGoogle Scholar
3.Thoma, D. J. and Perepezko, J. H., Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B., and McMeeking, R. (Mater. Res. Soc. Symp. Proc. 194, Pittsburgh, PA, 1990), p. 105.Google Scholar
4.Yoshida, M., Takasugi, T., and Hanada, S., in High-Temperature Ordered Intermetallics Alloys VI, edited by Horton, J., Baker, I., Hanada, S., Noebe, R. D., and Schwarz, D. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), p. 1395.Google Scholar
5.Chu, F., Thoma, D. J., He, Y., Mitchell, T. E., Chen, S. P., and Perepezko, J. H., in High-Temperature Ordered Intermetallics Alloys VI, edited by Horton, J., Baker, I., Hanada, S., Noebe, R. D., and Schwarz, D. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), p. 1089.Google Scholar
6.Takasugi, T., Yoshida, M., and Hanada, S., J. Mater. Res. 10, 2463 (1995).CrossRefGoogle Scholar
7.Takasugi, T., Yoshida, M., and Hanada, S., Mater. Sci. Eng. A192/193, 805 (1995).Google Scholar
8.Takasugi, T., Yoshida, M., and Hanada, S., Acta Mater. 44, 669 (1996).Google Scholar
9.Takasugi, T., Hanada, S., and Miyamoto, K., J. Mater. Res. 8, 3069 (1993).Google Scholar
10.Bewlay, B. P., Sutliff, J. A., Jackson, M. R., and Lipsitt, H. A., Acta Metall. Mater. 42, 2869 (1994).CrossRefGoogle Scholar
11.Takeyama, M. and Liu, C. T., Mater. Sci. Eng. A132, 61 (1991).Google Scholar
12.Chu, F. and Pope, D., Mater. Sci. Eng. A170, 39 (1993).CrossRefGoogle Scholar
13.Chu, F. and Pope, D., in High-Temperature Ordered Intermetallics Alloys VI, edited by Horton, J., Baker, I., Hanada, S., Noebe, R. D., and Schwarz, D. (Mater. Res. Soc. Symp. Proc. 364, Pittsburgh, PA, 1995), p. 1197.Google Scholar
14.Shah, D. M. and Anton, D. L., High-Temperature Ordered Intermetallics Alloys IV, edited by Johnson, L., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 63.Google Scholar
15.Takasugi, T., Yoshida, M., and Hanada, S., Proc. of Design Fundamentals of Composites, Intermetallics and Metal-Ceramics Systems (TMS, Warrendale, PA, 1996), p. 235.Google Scholar
16.Liu, C. T., Tortorelli, P. F., Horton, J. A., and Carmichael, C. A., Mater. Sci. Eng. A214, 23 (1996).Google Scholar
17.Chan, K. S. and Davidson, D. L., J. Mater. 48(09), 62 (1996).Google Scholar
18.Bewlay, B. P. and Jackson, M. R., J. Mater. Res. 11, 1917 (1996).Google Scholar
19.Yoshida, M. and Takasugi, T., Mater. Sci. Eng. A224, 77 (1997).CrossRefGoogle Scholar
20.Grujici, M., Tangrila, S., Cavin, O. B., Porter, W. D., and Hubbard, C. R., Mater. Sci. Eng. A160, 37 (1993).CrossRefGoogle Scholar
21.Goldschmid, H. J. and Brand, J. A., J. Less-Common Metals 3, 44 (1961).CrossRefGoogle Scholar
22.Thoma, D. J., Ph.D. Dissertation, University of Wisconsin (1992).Google Scholar
23.Pope, D. P. and Chu, F., Philos. Mag. A 69, 409 (1994).CrossRefGoogle Scholar
24.Laves, F., in Theory of Alloy Phase (ASM, Cleveland, OH, 1956), p. 123.Google Scholar
25.Gladyshevskii, I. E. and Bodak, O., in Intermetallic Compounds, Vol. 1, Principles, edited by Westbrook, J. H. and Fleischer, R. L. (John Wiley & Sons, Inc., New York, 1995), p. 403.Google Scholar
26.Allen, C. W. and Liao, K. C., Phys. Status Solidi (a) 74, 673 (1982).CrossRefGoogle Scholar
27.Thoma, D. J. and Perepezko, J. H., J. Alloys Compounds 224, 330 (1995).Google Scholar
28.Chu, F., Thoma, D. J., Kotula, P. G., Gerstl, S. G., Mitchell, T. E., Anderson, I. M., and Benlley, J., Acta Mater. 46, 1759 (1998).Google Scholar