Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T06:31:38.911Z Has data issue: false hasContentIssue false

Effect of thermally stable oligomerically modified clay on the properties of aramid-based nanocomposite materials

Published online by Cambridge University Press:  31 January 2011

Sonia Zulfiqar
Affiliation:
Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan
Muhammad Ilyas Sarwar*
Affiliation:
Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan; and Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716
*
a)Address all correspondence to this author. e-mail: ilyassarwar@hotmail.com
Get access

Abstract

Oligomerically modified reactive montmorillonite clay was used in the preparation of aramid-layered silicate nanocomposites. The dispersion behavior of organoclay was monitored in the aramid matrix synthesized from 4-aminophenylsulfone and isophthaloyl chloride in dimethylacetamide. These polyamide chains were end-capped with carbonyl chloride groups to interact chemically with oligomerically modified layered silicate. Thin composite films containing 2 to 20 wt% of organoclay were probed for x-ray diffraction (XRD), transmission electron microscopy (TEM), mechanical testing, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and water absorption measurements. XRD and TEM results described the distribution level of clay platelets and morphology of hybrid materials. Mechanical measurements revealed that modulus and strength improved up to 6 wt% clay loading, while toughness of nanocomposites increased with the addition of 2 wt% clay content in the matrix. The elongation showed a decreasing trend with increasing clay content in the hybrids. Thermal-decomposition temperatures of the nanocomposites were in the range 225 to 450 °C. The glass-transition temperature increased up to 12 wt% addition of organoclay in the matrix relative to pristine aramid depicting interfacial interactions among the phases. Water absorption of the nanocomposites reduced with augmenting organoclay loading, indicating decreased permeability.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1McNally, T., Murphy, W.R., Lew, C.Y., Turner, R.T., Brennan, G.P.: Polyamide-12 layered silicate nanocomposites by melt blending. Polymer (Guildf.) 44, 2761 2003CrossRefGoogle Scholar
2Shen, L., Phang, I.Y., Chen, L., Liu, T., Zeng, K.: Nanoindentation and morphological studies on nylon 66 nanocomposites. I. Effect of clay loading. Polymer (Guildf.) 45, 3341 2004CrossRefGoogle Scholar
3Gonzalez, I., Eguiazabal, J.I., Nazabal, J.: Exfoliated PA6,6 nanocomposites by modification with PA6. Polymer (Guildf.) 46, 2978 2005CrossRefGoogle Scholar
4Okada, A., Kawasumi, M., Usuki, A., Kojimi, Y., Kurauchi, T., Kamigato, O.: Synthesis and properties of nylon-6/clayhybrids in Polymer Based Molecular Composites, edited by D.W. Schaefer and J.E. Mark (Mater. Res. Soc. Symp. Proc. 171, Pittsburgh, PA, 1990), p. 45CrossRefGoogle Scholar
5Sikka, M., Cerini, L.N., Ghosh, S.S., Winey, K.I.: Melt intercalation of polystyrene in layered silicates. J. Polym. Sci., Part B: Polym. Phys. 34, 1443 19963.0.CO;2-T>CrossRefGoogle Scholar
6Okamoto, M., Morita, S., Taguchi, H., Kim, Y., Kotaka, T., Tateyama, H.: Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization. Polymer (Guildf.) 41, 3887 2000CrossRefGoogle Scholar
7Lee, D.C., Jang, L.W.: Preparation and characterization of PMMA-clay composite by emulsion polymerization. J. Appl. Polym. Sci. 61, 1117 19963.0.CO;2-P>CrossRefGoogle Scholar
8Kato, M., Usuki, A., Okada, A.: Synthesis of polypropylene oligomer-clay intercalation compounds. J. Appl. Polym. Sci. 66, 1781 19973.0.CO;2-Y>CrossRefGoogle Scholar
9Gilman, J.W., Jackson, C.L., Morgan, A.B. Jr., Harris, R., Manias, E., Giannelis, E.P., Wuthenow, M., Hilton, D., Philips, S.H.: Flammability properties of polymer-layered silicate nanocomposites. Propylene and polystyrene nanocomposites. Chem. Mater. 12, 1866 2000CrossRefGoogle Scholar
10Zilg, C., Mulhaupt, R., Finter, J.: Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates. Macromol. Chem. Phys. 200, 661 19993.0.CO;2-4>CrossRefGoogle Scholar
11Ke, Y., Lu, J., Yi, X., Zhao, J., Qi, Z.: The effects of promoter and curing process on exfoliation behavior of epoxy/clay nanocomposites. J. Appl. Polym. Sci. 78, 808 20003.0.CO;2-9>CrossRefGoogle Scholar
12Ke, Y., Long, C., Qi, Z.: Crystallization, properties, and crystal and nanoscale morphology of PET-clay nanocomposites. J. Appl. Polym. Sci. 71, 1139 19993.0.CO;2-E>CrossRefGoogle Scholar
13Huang, J.C., Zhu, Z.K., Yin, J., Qian, X.F., Sun, Y.Y.: Poly (etherimide)/montmorillonite nanocomposites prepared by melt intercalation: Morphology, solvent resistance properties and thermal properties. Polymer (Guildf.) 42, 873 2001CrossRefGoogle Scholar
14Agag, T., Koga, T., Takeichi, T.: Studies on thermal and mechanical properties of polyimide-clay nanocomposites. Polymer (Guildf.) 42, 3399 2001CrossRefGoogle Scholar
15Tyan, H.L., Liu, Y.C., Wei, K.H.: Thermally and mechanically enhanced clay/polyimide nanocomposites via reactive organoclay. Chem. Mater. 11, 1942 1999CrossRefGoogle Scholar
16Tyan, H.L., Wei, K.H., Hsieh, T.E.: Mechanical properties of clay-polyimide (BTDA-ODA) nanocomposites via ODA-modified organoclay. J. Polym. Sci., Part B: Polym. Phys. 38, 2873 20003.0.CO;2-T>CrossRefGoogle Scholar
17Zulfiqar, S., Ahmad, Z., Ishaq, M., Saeed, S., Sarwar, M.I.: Thermal and mechanical properties of SEBS-g-MA based inorganic composite materials. J. Mater. Sci. 42, 93 2007CrossRefGoogle Scholar
18Kausar, A., Zulfiqar, S., Shabbir, S., Ishaq, M., Sarwar, M.I.: Mechanical properties of functionalized SEBS based inorganic hybrid materials. Polym. Bull. 59, 457 2007CrossRefGoogle Scholar
19Bibi, N., Sarwar, M.I., Ishaq, M., Ahmad, Z.: Mechanical and thermal properties of nanocomposites of poly(vinyl chloride) and co-poly(vinyl chloride-vinyl alcohol-vinyl acetate) with montmorillonite. Polym. Polym. Compos. 15, 313 2007Google Scholar
20Tyan, H.L., Leu, C.M., Wei, K.H.: Effect of reactivity of organics modified montmorillonite on the thermal and mechanical properties of montmorillonite/polyimide nanocomposites. Chem. Mater. 13, 222 2001CrossRefGoogle Scholar
21Giannelis, E.P.: Polymer layered silicate nanocomposites. Adv. Mater. 8, 29 1996CrossRefGoogle Scholar
22Krishnamoorti, R., Vaia, R.A., Giannelis, E.P.: Structure and dynamics of polymer-layered silicate nanocomposites. Chem. Mater. 8, 1728 1996CrossRefGoogle Scholar
23Pauly, T.R., Pinnavaia, T.J.: Pore size modification of mesoporous HMS molecular sieve silicas with wormhole framework structures. Chem. Mater. 13, 987 2001CrossRefGoogle Scholar
24Kruk, M., Jaroniec, M., Sayari, A.: A unified interpretation of high-temperature pore size expansion processes in MCM-41 mesoporous silicas. J. Phys. Chem. B 103, 4590 1999CrossRefGoogle Scholar
25Zulfiqar, S., Sarwar, M.I.: Soluble aromatic polyamide bearing sulfone linkages: Synthesis and characterization. High Perform. Polym. (2008, DOI: 10.1177/0954008308089114)Google Scholar
26Zulfiqar, S., Ishaq, M., Ahmad, Z., Sarwar, M.I.: Synthesis, static and dynamic light scattering studies of soluble aromatic polyamide. Polym. Adv. Technol. 19, 1250 2008CrossRefGoogle Scholar
27Yano, K., Usuki, A., Okada, A., Kurauchi, T., Kamigaito, O.: Synthesis and properties of polyimide-clay hybrid. J. Polym. Sci., Part A: Polym. Chem. 31, 2493 1993CrossRefGoogle Scholar
28Lan, T., Kaviratna, P.D., Pinnavaia, T.J.: On the nature of polyimide-clay hybrid composites. Chem. Mater. 6, 573 1994CrossRefGoogle Scholar
29Sarwar, M.I., Zulfiqar, S., Ahmad, Z.: Organic-inorganic nanocomposites prepared from fluoro-aramid and silica. Colloid Polym. Sci. 285, 1733 2007CrossRefGoogle Scholar
30Sarwar, M.I., Zulfiqar, S., Ahmad, Z.: Poly (ether amide) and silica nanocomposites derived from sol-gel process. J. Sol-Gel Sci. Technol. 45, 89 2008CrossRefGoogle Scholar
31Zulfiqar, S., Sarwar, M.I.: Mechanical and thermal behavior of clay-reinforced aramid nanocomposite materials. Scr. Mater 59, 436 2008CrossRefGoogle Scholar
32Zulfiqar, S., Lieberwirth, I., Ahmad, Z., Sarwar, M.I.: New aramid-based nanocomposites: Synthesis and characterization. Polym. Eng. Sci. 48, 1624 2008CrossRefGoogle Scholar
33Zulfiqar, S., Ishaq, M., Sarwar, M.I.: Effect of surface modification of montmorillonite on the properties of aromatic polyamide/clay nanocomposites. Surf. Interface Anal. 40, 1195 2008CrossRefGoogle Scholar
34Sarwar, M.I., Zulfiqar, S., Ahmad, Z.: Polyamide-silica nanocomposites: Mechanical, morphological and thermomechanical investigations. Polym. Int. 57, 292 2008CrossRefGoogle Scholar
35Sarwar, M.I., Zulfiqar, S., Ahmad, Z.: Preparation and properties of polyamide-titania nanocomposites. J. Sol-Gel Sci. Technol. 44, 41 2007CrossRefGoogle Scholar
36Sarwar, M.I., Zulfiqar, S., Ahmad, Z.: Properties of polyamide– zirconia nanocomposites prepared from sol-gel technique. Polym Compos. (2008, DOI: 10.1002/pc.20538)Google Scholar