Published online by Cambridge University Press: 31 January 2011
The effect of particle volume fraction fp on the light transmittance of glass particle-dispersed epoxy matrix composites with a particle volume fraction of fp = 0.0001 to 0.4 was studied. The particle size used was much larger than the wavelength of light in a visible wavelength. The transmitted laser beam scattering pattern and light transmittance of the composites were obtained, and the transmitted laser beam pattern showed a broadening, which increased with an increase in particle volume fraction. This behavior appeared more remarkable in particles with smaller diameters. The light transmittance of the composite was affected by the particle volume fraction fp and was divided into two characteristic regions according to fp. For fp < 0.01, the light transmittance was slightly affected by the incorporation of the particles, while the light transmittance of the composite with fp > 0.01 was strongly affected by fp and size of the glass particle dp. The effects of fp and dp on the light transmittance are explained by the introduction of a normalized total surface area 〈 S〉 A guideline to obtain higher light transmittance of the composite is discussed based on the parameter 〈S 〉.