Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T19:08:34.077Z Has data issue: false hasContentIssue false

Effect of zirconia content on electrical conductivities of mullite/zirconia composites measured by impedance spectroscopy

Published online by Cambridge University Press:  31 January 2011

Hong-Da Ko
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan
Chien-Cheng Lin*
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30050, Taiwan
Kuo-Chuang Chiu
Affiliation:
Materials Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan
*
a)Address all correspondence to this author. e-mail: chienlin@faculty.nctu.edu.tw
Get access

Abstract

Electrical conductivities of various mullite/zirconia composites, as well as monolithic mullite and zirconia, were measured using AC impedance spectroscopy from 100 Hz to 10 MHz at temperatures ranging from 150 to 1300 °C. The impedance spectra of monolithic zirconia and mullite/zirconia composites showed two semicircles because of the contributions from grains and grain boundaries, while those of monolithic mullite had one semicircle due to the predominant contribution from grains. This indicates that the conductivities of the mullite/zirconia composites increased with zirconia content. The activation energies of electrical conduction in mullite and zirconia were about 65 and 79 kJ/mol, respectively, and those of mullite/zirconia composites were between 65 and 79 kJ/mol. While the conductivities of various composites at 1 MHz were fitted by Lichtenecker’s rule, the general mixing equation could be applied to the conductivities measured at 1 kHz.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ishitsuka, M., Sato, T., Endo, T.Shimada, M.: Sintering and mechanical properties of yttria-doped tetragonal ZrO2 polycrystal/mullite composites. J. Am. Ceram. Soc. 70, C342 1987CrossRefGoogle Scholar
2Kapuri, N., Rai, K.N.Upadhyaya, G.S.: Sintering of mullite-based particulate composites containing ZrO2. J. Mater. Sci. 31, 1481 1996CrossRefGoogle Scholar
3Hamidouche, M., Bouaouadja, N., Osmani, H., Torrecillias, R.Fantozzi, G.: Thermomechanical behaviour of mullite–zirconia composite. J. Eur. Ceram. Soc. 16, 441 1996CrossRefGoogle Scholar
4Ruh, R., Mazdiyasni, K.S.Mendiratta, M.G.: Mechanical and microstructural characterization of mullite and mullite-SiC-whisker and ZrO2-toughened-mullite-SiC-whisker composites. J. Am. Ceram. Soc. 71, 503 1988CrossRefGoogle Scholar
5Leriche, A.: Mechanical properties and microstructures of mullite-zirconia composites in Ceramic Transactions, Vol. 6, Mullite and Mullite Matrix Composites, edited by S. Somiya, R.F. Davis, and J.A. Pask The American Ceramic Society Westerville, OH 1990 541Google Scholar
6Chiochetti, V.E.J.Henry, E.C.: Electrical conductivity of some commercial refractories in the temperature range 600° to 1500 °C. J. Am. Ceram. Soc. 36, 180 1953CrossRefGoogle Scholar
7Chaudhuri, S.P., Banfyopadhyay, S.Mitra, N.: Electrical resistivity of mullite obtained by sintering Al2O3–SiO2 mixtures. Interceram. 44, 300 1995Google Scholar
8Gerhardt, R.A.Ruh, R.: Volume fraction and whisker orientation dependence of the electrical properties of SiC-whisker-reinforced mullite composites. J. Am. Ceram. Soc. 84, 2328 2001CrossRefGoogle Scholar
9Turnmala, R.R.: Ceramic and glass–ceramic packaging in the 1990s. J. Am. Ceram. Soc. 74, 895 1991Google Scholar
10Matsumoto, H., Iino, Y., Fujiwara, C., Kabeya, Z.Onda, T.: Experience on the high-power SiC microwave dummy-load using SiC absorber in Proceedings of the 1999 Particle Accelerator Conference edited by A. Luccio and W. MacKay IEEE Piscataway, NJ 1999 842Google Scholar
11Chaudhuri, S.P., Patra, S.K.Chakraborty, A.K.: Electrical resistivity of transition metal ion doped mullite. J. Eur. Ceram. Soc. 19, 2941 1999CrossRefGoogle Scholar
12Gerhardt, R.: Microstructural characterization of composites via electrical measurements. Ceram. Eng. Sci. Proc. 15, 1174 1994CrossRefGoogle Scholar
13Runyan, J., Gerhardt, R.A.Ruh, R.: Electrical properties of boron nitride matrix composites: I, Analysis of McLachlan Equation and modeling of the conductivity of boron nitride–boron carbide and boron nitride–silicon carbide composites. J. Am. Ceram. Soc. 84, 1490 2001CrossRefGoogle Scholar
14Suito, H., Inoue, R.Nagatani, A.: Mullite as an electrochemical probe for the determination of low oxygen activity in liquid iron. Steel Res. 63, 419 1992CrossRefGoogle Scholar
15Hirata, Y.Matsuda, M.: Electromotive force measurement of mullite ceramics as oxygen solid electrolyte. J. Ceram. Soc. Jpn. 101, 233 1993CrossRefGoogle Scholar
16Minh, N.Q.: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563 1993CrossRefGoogle Scholar
17ZView Version 2.1b Scribner Associates, Inc,Google Scholar
18Butler, E.P.Bonanos, N.: The characterization of ZrO2 engineering ceramics by A.C. impedance spectroscopy. Mater. Sci. Eng. 71, 49 1985CrossRefGoogle Scholar
19Guo, X.Zhang, Z.: Grain size dependent grain boundary defect structure: Case of doped zirconia. Acta Mater. 51, 2539 2003CrossRefGoogle Scholar
20Osendi, M.I.Jurado, J.R.: AC impedance complex plane studies on alumina–zirconia and mullite–zirconia composites in Zirconia ’88: Advances in Zirconia Science and Technology, edited by S. Meriani and C. Palmonari Elsevier Applied Science London 1989 239CrossRefGoogle Scholar
21Ribeiro, M.J., Abrantes, J.C.C., Ferreira, J.M.Labrincha, J.A.: Predicting processing-sintering-related properties of mullite– alumina ceramic bodies based on Al-rich anodising sludge by impedance spectroscopy. J. Eur. Ceram. Soc. 24, 3841 2004CrossRefGoogle Scholar
22Meng, G.Y.Huggins, R.A.: The oxygen ion conductivity of mullite prepared using a wet chemical process. Solid State Ionics 11, 271 1984CrossRefGoogle Scholar
23Hirata, Y., Kawabata, M.Ishihara, Y.: Electrical properties of silica–alumina ceramics in nitrogen atmosphere. J. Mater. Res. 8, 1116 1993CrossRefGoogle Scholar
24Macdonald, J.R.: Impedance Spectroscopy: Emphasizing Solid Materials and Systems John Wiley & Sons New York 1987Google Scholar
25Prochazka, S., Wallace, J.S.Claussen, N.: Microstructure of sintered mullite––zirconia composites. J. Am. Ceram. Soc. 66, C125 1983Google Scholar
26Zangvil, A., Lin, C.C.Ruh, R.: Microstructural studies in alkoxide-derived mullite/zirconia/silicon carbide-whisker composites. J. Am. Ceram. Soc. 75, 1254 1992CrossRefGoogle Scholar
27McLachlan, D.S., Blaszkiewicz, M.Newnham, R.E.: Electrical resistivity of composites. J. Am. Ceram. Soc. 73, 2187 1990CrossRefGoogle Scholar
28Lichtenecker, K.: Dielectric constant of natural and synthetic mixtures. Phys. Z. 27, 115 1926Google Scholar
29Moon, K.S., Choi, H.D., Lee, A.K., Cho, K.Y., Yoon, H.G.Suh, K.S.: Dielectric properties of epoxy-dielectrics-carbon black composite for phantom materials at radio frequencies. J. Appl. Polym. Sci. 77, 1294 20003.0.CO;2-E>CrossRefGoogle Scholar
30Kobayashi, H.Hosokawa, Y.: Dielectric constant characteristics of a new composite dielectric material. J. Am. Ceram. Soc. 73, 1774 1990CrossRefGoogle Scholar
31Zakri, T., Laurent, J.P.Vauclin, M.: Theoretical evidence for “Lichtenecker’s mixture formulae” based on the effective medium theory. J. Phys. D: Appl. Phys. 31, 1589 1998CrossRefGoogle Scholar
32Ko, H.D.Lin, C.C.: Oxygen diffusivities in mullite/zirconia composites measured by 18O/16O isotope exchange and secondary ion mass spectrometry. J. Mater. Res. 23, 353 2008CrossRefGoogle Scholar