Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T10:09:22.806Z Has data issue: false hasContentIssue false

Effective grain alignment in bismuth titanate ceramic by centrifugal force

Published online by Cambridge University Press:  01 July 2006

Ping-Hua Xiang
Affiliation:
National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan
Yoshiaki Kinemuchi*
Affiliation:
National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan
Koji Watari
Affiliation:
National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan
Hirohide Ishiguro
Affiliation:
Shinto V-Cerax, Ltd., Toyokawa 442-8506, Japan
Fei Cao
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
Xian-Lin Dong
Affiliation:
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
*
b)Address all correspondence to this author. e-mail: y.kinemuchi@aist.go.jp
Get access

Abstract

Effective grain alignment in bismuth titanate ceramic was successfully realized by a novel pressure sintering technology, centrifugal sintering, in which centrifugal force is introduced by high-speed rotation of materials during the process of sintering. X-ray diffraction analyses indicated a very high orientation degree with a Lotgering factor f of ∼0.96 in centrifugal sintered samples. Scanning electron micrographs revealed that the platelike grains are well oriented with their c axes parallel to centrifugal force. The mechanism responsible for grain alignment with introduction of centrifugal force was tentatively proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Turner, R.C., Fuierer, P.A., Newnham, R.E., Shrout, T.R.: Materials for high-temperature acoustic and vibration sensors: A review. Appl. Acoust. 41, 299 (1994).CrossRefGoogle Scholar
2.Jain, R., Chauhan, A.K.S., Gupta, V., Sreenivas, K.: Piezoelectric properties of nonstoichiometric Sr1–x Bi2+2x/3Ta2O9 ceramics. J. Appl. Phys. 97, 124101 (2005).Google Scholar
3.de Araujo, C.A.P., Cuchiaro, J.D., McMillan, L.D., Scott, M.C., Scott, J.F.: Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627 (1995).CrossRefGoogle Scholar
4.Chiou, T.Y., Kuo, D.H.: Th4+ donor/Mg2+ acceptor-cosubstituted (Bi,Nd)4Ti3O12 films with excellent ferroelectric properties. Appl. Phys. Lett. 86, 032910 (2005).CrossRefGoogle Scholar
5.Kobayashi, T., Noguchi, Y., Miyayama, M.: Enhanced spontaneous polarization in superlattice-structured Bi4Ti3O12– BaBi4Ti4O15 single crystals. Appl. Phys. Lett. 86, 012907 (2005).Google Scholar
6.Amorín, H., Shvartsman, V.V., Kholkin, A.L., Costa, M.E.V.: Ferroelectric and dielectric anisotropy in high-quality SrBi2Ta2O9 single crystals. App. Phys. Lett. 85, 5667 (2004).Google Scholar
7.Kimura, T., Yoshimoto, T., Iida, N., Fujita, Y., Yamaguchi, T.: Mechanism of grain orientation during hot-pressing of bismuth titanate. J. Am. Ceram. Soc. 72, 85 (1989).CrossRefGoogle Scholar
8.Takenaka, T., Sakata, K.: Grain orientation and electrical properties of hot-forged Bi4Ti3O12 ceramics. Jpn. J. Appl. Phys. 19, 31 (1980).Google Scholar
9.Horn, J.A., Zhang, S.C., Selvaraj, U., Messing, G.L., Trolier-McKinstry, S.: Templated grain growth of textured bismuth titanate. J. Am. Ceram. Soc. 82, 921 (1999).Google Scholar
10.Shen, Z., Liu, J., Grins, J., Nygren, M., Wang, P., Kan, Y., Yan, H., Sutter, U.: Effective grain alignment in Bi4Ti3O12 ceramics by superplastic-deformation-induced directional dynamic ripening. Adv. Mater. 17, 676 (2005).Google Scholar
11.Kan, Y., Wang, P., Xu, T., Zhang, G., Yan, D., Shen, Z., Chen, Y-B.: Spark plasma sintering of bismuth titanate ceramics. J. Am. Ceram. Soc. 88, 1631 (2005).Google Scholar
12.Kinemuchi, Y., Watari, K., Uchimura, K.: Centrifugal sintering of ceramics. J. Eur. Ceram. Soc. 24, 2061 (2004).Google Scholar
13.Park, B.H., Kang, B.S., Bu, S.D., Noh, T.W., Lee, J., Jo, W.: Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682 (1999).Google Scholar
14.Cummins, S.E., Cross, L.E.: Electrical and optical properties of ferroelectric Bi4Ti3O12 single crystals. J. Appl. Phys. 39, 2268 (1968).Google Scholar
15.Fouskova, A., Cross, L.E.: Dielectric properties of bismuth titanate. J. Appl. Phys. 41, 2834 (1970).Google Scholar
16.Shulman, H.S., Testorf, M., Damjanovic, D., Setter, N.: Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate. J. Am. Ceram. Soc. 79, 3124 (1996).Google Scholar
17.Villegas, M., Caballero, A.C., Moure, C., Durán, P., Fernández, J.F.: Factors affecting the electrical conductivity of donor-doped Bi4Ti3O12 piezoelectric ceramics. J. Am. Ceram. Soc. 82, 2411 (1999).Google Scholar
18.Xiang, P-H., Kinemuchi, Y., Watari, K.: Synthesis of layer-structured ferroelectric Bi3NbTiO9 plate-like seed crystals. Mater. Lett. 59, 1876 (2005).CrossRefGoogle Scholar
19.Lotgering, F.K.: Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. J. Inorg. Nucl. Chem. 9, 113 (1959).Google Scholar
20.Dollase, W.A.: Correction of intensities for preferred orientation in powder diffractometry: Application of the March model. J. Appl. Crystallogr. 19, 267 (1986).CrossRefGoogle Scholar
21.Hong, S-H., Trolier-McKinstry, S., Messing, G.L.: Dielectric and electromechanical properties of textured niobium-doped bismuth titanate ceramics. J. Am. Ceram. Soc. 83, 113 (2000).Google Scholar