Published online by Cambridge University Press: 31 January 2011
The effects of chloromethane on diamond nucleation and growth were studied by employing laser reflective interferometry. Chloromethane enhances the film-growth rate only slightly compared to methane. However, chloromethane greatly enhances the nucleation density and shortens the film-forming stage, more significantly at a lower temperature. Thus, chloromethane facilitates the low temperature growth mainly through the enhancement of nucleation. Nucleation density is strongly dependent on the compositions of H atoms and carbon species prior to diamond growth. The residual diamond seeds by diamond-grit scratching are suggested to be the major nucleation sites. Chloromethane can enhance diamond nucleation by protecting the residual seeds from being etched by H atoms.