Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T15:35:17.307Z Has data issue: false hasContentIssue false

The Effects of Chloromethane on Diamond Nucleation and Growth in a Hot-filament Chemical Vapor Deposition Reactor

Published online by Cambridge University Press:  31 January 2011

Jih-Jen Wu
Affiliation:
Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China
Franklin Chau-Nan Hong*
Affiliation:
Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China
*
a)corresponding author.
Get access

Abstract

The effects of chloromethane on diamond nucleation and growth were studied by employing laser reflective interferometry. Chloromethane enhances the film-growth rate only slightly compared to methane. However, chloromethane greatly enhances the nucleation density and shortens the film-forming stage, more significantly at a lower temperature. Thus, chloromethane facilitates the low temperature growth mainly through the enhancement of nucleation. Nucleation density is strongly dependent on the compositions of H atoms and carbon species prior to diamond growth. The residual diamond seeds by diamond-grit scratching are suggested to be the major nucleation sites. Chloromethane can enhance diamond nucleation by protecting the residual seeds from being etched by H atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Connell, L. L., Fleming, J. W., Chu, H-N., Vestyck, D. J., Jr., Jensen, E., and Butler, J. E., J. Appl. Phys. 78, 3622 (1995).CrossRefGoogle Scholar
2.Rudder, R. A., Hudson, G. C., Posthill, J. B., Thomas, R. E., and Markunas, R. J., Appl. Phys. Lett. 59, 791 (1991).CrossRefGoogle Scholar
3.Hong, F. C-N., Liang, G-T., Chang, D., and Yu, S-C., Applications of Diamond Films and Related Materials, Materials Science Monographs, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Foldman, A. (Elsevier, Amsterdam, 1991), Vol. 73, p. 577.Google Scholar
4.Hong, F. C-N., Hsieh, J-C., Wu, J-J., Liang, G-T., and Hwang, J-H., Diamond Related Mater. 2, 365 (1993).CrossRefGoogle Scholar
5.Hong, F. C-N., Liang, G-T., Wu, J-J., Chang, D., and Hsieh, J-C., Appl. Phys. Lett. 63, 3149 (1993).CrossRefGoogle Scholar
6.Bai, B. J., Chu, C. J., Patterson, D. E., Hauge, R. H., and Margrave, J. L., J. Mater. Res. 8, 233 (1993).CrossRefGoogle Scholar
7.Komplin, N. J., Bai, B. J., Chu, C. J., Margrave, J. L., and Hauge, R. H., Diamond Materials, edited by Dismukes, J. P. and Ravi, K. V. (The Electrochemical Society Processings Series, Pennington, NJ, 1993), p. 385.Google Scholar
8.Hong, F. C-N., Hsu, J. Y., Chang, M., Liang, G. T., and Wu, J. J., Advances in New Diamond Science and Technology, 4th International Conference on New Diamond Science and Technology, Kobe, Japan, 1994, edited by Saito, S., Fujimori, N., Fukunaga, O., Kamo, M., Kobashi, K., and Yoshikawa, M. (MY, Tokyo, Japan, 1994), p. 23.Google Scholar
9.Hong, F. C-N., Wu, J-J., Su, C-T., and Yeh, S-H., Advances in New Diamond Science and Technology, 4th Int. Conference on New Diamond Science and Technology, Kobe, Japan, 1994, edited by Saito, S., Fujimori, N., Fukunaga, O., Kamo, M., Kobashi, K., and Yoshikawa, M. (MY, Tokyo, Japan, 1994), p. 85.Google Scholar
10.Pan, C., Chu, C. J., Margrave, J. L., and Hauge, R. H., J. Electrochem. Soc. 141, 3246 (1994).CrossRefGoogle Scholar
11.Fox, C. A., McMaster, M. C., Hsu, W. L., Kelly, M. A., and Hagstrom, S. B., Appl. Phys. Lett. 67, 2379 (1995).CrossRefGoogle Scholar
12.Wu, J-J., Yeh, S-H., Su, C-T., and Hong, F. C-N., Appl. Phys. Lett. 68, 3254 (1996).CrossRefGoogle Scholar
13.Tsang, R. S., Rego, C. A., May, P. W., Thumim, J., Ashfold, M. N. R., Rosser, K. N., Younes, C. M., and Holt, M. J., Diamond Related Mater. 5, 359 (1996).CrossRefGoogle Scholar
14.Rego, C. A., Tsang, R. S., May, P. W., Ashfold, M. N. R., and Rosser, K. N., J. Appl. Phys. 79, 7264 (1996).CrossRefGoogle Scholar
15.Kotaki, T., Horri, N., Isono, H., and Matsumoto, S., J. Electrochem. Soc. 143, 2003 (1996).CrossRefGoogle Scholar
16.Wu, J-J. and Hong, F. C-N., Appl. Phys. Lett. 70, 185 (1997).CrossRefGoogle Scholar
17.Wu, J-J. and Hong, F. C-N., J. Appl. Phys. 81, 3647 (1997).CrossRefGoogle Scholar
18.Wu, J-J. and Hong, F. C-N., J. Appl. Phys. 81, 3653 (1997).Google Scholar
19.Jih-JenWu, , Ph. D. Dissertation, National Cheng-Kung University, Taiwan, 1997.Google Scholar
20.Wu, C-H., Weber, W.H., Potter, T. J., and Tamor, M. A., J. Appl. Phys. 73, 2977 (1993).CrossRefGoogle Scholar
21.Smolin, A. A., Pimenov, S. M., Ralchenko, V. G., Kononenko, T. V., Konov, V. I., and Loubnin, E. N., 2nd International Conference on the Applications of Diamond Films and Related Materials, Omiya, Saitama, Japan, 1993, edited by Yoshikawa, M., Murakawa, M., Tzeng, Y., and Yarbrough, W. A. (MY, Tokyo, Japan, 1993), p. 679.Google Scholar
22.McMaster, M. C., Hsu, W. L., Coltrin, M. E., and Dandy, D. S., J. Appl. Phys. 76, 7567 (1996).CrossRefGoogle Scholar
23.Weast, R. C., CRC Handbook of Chemistry and Physics, 1st student ed. (CRC, Boca Raton, FL, 1988).Google Scholar
24.Freedman, A., J. Appl. Phys. 75, 3112 (1994).CrossRefGoogle Scholar
25.Corat, E. J. and Goodwin, D. G., J. Appl. Phys. 74, 2021 (1993).CrossRefGoogle Scholar
26.Iijima, S., Aikawa, Y., and Baba, K., Appl. Phys. Lett. 57, 2646 (1990).CrossRefGoogle Scholar
27.Okubo, T., Ikari, S., Kusakabe, K., and Morooka, S., J. Mater. Sci. Lett. 11, 460 (1992).CrossRefGoogle Scholar
28.Vietzke, E., Philipps, V., Flaskamp, K., Koidl, P., and Wild, Ch., Surf. Coat. Technol. 47, 156 (1991).CrossRefGoogle Scholar