Published online by Cambridge University Press: 31 January 2011
Ni3Al samples were implanted with different doses of 150 keV Cr+ ions to modify the surface region. The high temperature oxidation behavior was tested. The surface layer structure was investigated by AES, TEM, XRD, and optical microscope before and after the test. The experimental results show that chromium ions turn a small amount of ordered superlattice Ni3Al phase into a disordered Ni–Al–Cr phase. Also there is a bcc chromium phase in the implanted sample. Implanted Ni3Al alloy has better oxidation resistance than the unimplanted one at 900 °C. The oxide layer is of a multilayer structure after 50 h oxidation, composed of a NiO inner layer, Cr2O3, spinel NiAl2O4 intermediate layers, and an α–Al2O3 external layer at the oxide/air interface. The α-Al2O3 and Cr2O3 are independent scale-like layers. The two protective layers improve the oxidation resistance significantly. The effects of implanted elements and possible reaction mechanisms are discussed.