Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T18:46:38.628Z Has data issue: false hasContentIssue false

Effects of interlayer properties on the performance of tandem organic solar cells with low and high band gap polymers

Published online by Cambridge University Press:  23 May 2019

Zenan Jiang*
Affiliation:
Flexible Electronics and Energy Lab (FEEL), Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
Bobak Gholamkhass
Affiliation:
Flexible Electronics and Energy Lab (FEEL), Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
Peyman Servati
Affiliation:
Flexible Electronics and Energy Lab (FEEL), Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
*
a)Address all correspondence to this author. e-mail: jiang@ece.ubc.ca
Get access

Abstract

Tandem organic solar cells with two stacked cells were fabricated using semiconducting polymers and fullerene derivatives. A thin intermediate multilayer of calcium, silver, and molybdenum oxide connects the front and the back cells. Bulk heterojunction (BHJ) films of the low band gap (BG) polymer, poly[N-9″-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT), and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) are used for the front cell. As for the back cell of the tandem structure, the same PCDTBT:PC71BM BHJ (T1) or the high BG polymer poly(3-hexylthiophene) (P3HT) blended with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) BHJ (T2) are used. The critical role of interlayer properties on the photovoltaic performance of devices are investigated. The observed open-circuit potential for the tandem cell approaches the sum of the potentials of the two respective subcells, demonstrating the potential for increasing the voltage of the solar cell using the tandem structure even with same or lower band gap polymer in the front.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jensen, J., Mikkelsen, M., and Krebs, F.C.: Flexible substrates as basis for photocatalytic reduction of carbon dioxide. Sol. Energy Mater. Sol. Cells 95, 2949 (2011).CrossRefGoogle Scholar
Krebs, F.C., Gevorgyan, S.A., and Alstrup, J.: A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies. J. Mater. Chem. 19, 5442 (2009).CrossRefGoogle Scholar
Krebs, F.C.: All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org. Electron. 10, 761 (2009).CrossRefGoogle Scholar
Krebs, F.C.: Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 394 (2009).CrossRefGoogle Scholar
Dennler, G., Scharber, M.C., and Brabec, C.J.: Polymer–fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323 (2009).CrossRefGoogle Scholar
Li, G., Zhu, R., and Yang, Y.: Polymer solar cells. Nat. Photonics 6, 153 (2012).CrossRefGoogle Scholar
Meng, L., Zhang, Y., Wan, X., Li, C., Zhang, X., Wang, Y., Ke, X., Xiao, Z., Ding, L., Xia, R., Yip, H-L., Cao, Y., and Chen, Y.: Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094 (2018).CrossRefGoogle ScholarPubMed
Li, M., Gao, K., Wan, X., Zhang, Q., Kan, B., Xia, R., Liu, F., Yang, X., Feng, H., Ni, W., Wang, Y., Peng, J., Zhang, H., Liang, Z., Yip, H-L., Peng, X., Cao, Y., and Chen, Y.: Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photonics 11, 85 (2016).CrossRefGoogle Scholar
Shaheen, S.E., Brabec, C.J., Sariciftci, N.S., Padinger, F., Fromherz, T., and Hummelen, J.C.: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841 (2001).CrossRefGoogle Scholar
Ma, W.L., Yang, C.Y., Gong, X., Lee, K., and Heeger, A.J.: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617 (2005).CrossRefGoogle Scholar
Shrotriya, V., Wu, E.H-E., Li, G., Yao, Y., and Yang, Y.: Efficient light harvesting in multiple-device stacked structure for polymer solar cells. Appl. Phys. Lett. 88, 064104 (2006).CrossRefGoogle Scholar
Zou, Y., Deng, Z.B., Potscavage, W.J., Hirade, M., Zheng, Y.Q., and Adachi, C.: Very high open-circuit voltage of 5.89 V in organic solar cells with 10-fold-tandem structure. Appl. Phys. Lett. 100, 4 (2012).CrossRefGoogle Scholar
Dennler, G., Scharber, M.C., Ameri, T., Denk, P., Forberich, K., Waldauf, C., and Brabec, C.J.: Design rules for donors in bulk-heterojunction tandem solar cells-towards 15% energy-conversion efficiency. Adv. Mater. 20, 579 (2008).CrossRefGoogle Scholar
Dou, L.T., You, J.B., Yang, J., Chen, C.C., He, Y.J., Murase, S., Moriarty, T., Emery, K., Li, G., and Yang, Y.: Tandem polymer solar cells featuring a spectrally matched low-band gap polymer. Nat. Photonics 6, 180 (2012).CrossRefGoogle Scholar
Gevaerts, V.S., Furlan, A., Wienk, M.M., Turbiez, M., and Janssen, R.A.J.: Solution processed polymer tandem solar cell using efficient small and wide band gap polymer:fullerene blends. Adv. Mater. 24, 2130 (2012).CrossRefGoogle Scholar
Minnaert, B. and Veelaert, P.: Guidelines for the band gap combinations and absorption windows for organic tandem and triple-junction solar cells. Materials 5, 1933 (2012).CrossRefGoogle Scholar
Chou, C.H., Kwan, W.L., Hong, Z.R., Chen, L.M., and Yang, Y.: A metal-oxide interconnection layer for polymer tandem solar cells with an inverted architecture. Adv. Mater. 23, 1282 (2011).CrossRefGoogle ScholarPubMed
Dou, L.T., Gao, J., Richard, E., You, J.B., Chen, C.C., Cha, K.C., He, Y.J., Li, G., and Yang, Y.: Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-band gap polymers designed for single junction and tandem polymer solar cells. J. Am. Chem. Soc. 134, 10071 (2012).CrossRefGoogle Scholar
Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.Q., Dante, M., and Heeger, A.J.: Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222 (2007).CrossRefGoogle ScholarPubMed
Namkoong, G., Boland, P., Lee, K., and Dean, J.: Design of organic tandem solar cells using PCPDTBT:PC61BM and P3HT:PC71BM. J. Appl. Phys. 107, 124515 (2010).CrossRefGoogle Scholar
Puetz, A., Steiner, F., Mescher, J., Reinhard, M., Christ, N., Kutsarov, D., Kalt, H., Lemmer, U., and Colsmann, A.: Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells. Org. Electron. 13, 2696 (2012).CrossRefGoogle Scholar
Blouin, N., Michaud, A., Gendron, D., Wakim, S., Blair, E., Neagu-Plesu, R., Belletete, M., Durocher, G., Tao, Y., and Leclerc, M.: Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. J. Am. Chem. Soc. 130, 732 (2008).CrossRefGoogle Scholar
Park, S.H., Roy, A., Beaupre, S., Cho, S., Coates, N., Moon, J.S., Moses, D., Leclerc, M., Lee, K., and Heeger, A.J.: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3, 297 (2009).CrossRefGoogle Scholar
Chu, T-Y., Alem, S., Verly, P.G., Wakim, S., Lu, J., Tao, Y., Beaupre, S., Leclerc, M., Belanger, F., Desilets, D., Rodman, S., Waller, D., and Gaudiana, R.: Highly efficient polycarbazole-based organic photovoltaic devices. Appl. Phys. Lett. 95, 063304 (2009).CrossRefGoogle Scholar
Gunawan, O., Todorov, T.K., and Mitzi, D.B.: Loss mechanisms in hydrazine-processed Cu2ZnSn(Se, S)4 solar cells. Appl. Phys. Lett., 233506 97 (2010).CrossRefGoogle Scholar
Li, G., Yao, Y., Yang, H., Shrotriya, V., Yang, G., and Yang, Y.: “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv. Funct. Mater. 17, 1636 (2007).CrossRefGoogle Scholar
Beiley, Z.M., Hoke, E.T., Noriega, R., Dacuna, J., Burkhard, G.F., Bartelt, J.A., Salleo, A., Toney, M.F., and McGehee, M.D.: Morphology-dependent trap formation in high performance polymer bulk heterojunction solar cells. Adv. Energy Mater. 1, 954 (2011).CrossRefGoogle Scholar
Namkoong, G., Kong, J., Samson, M., Hwang, I-W., and Lee, K.: Active layer thickness effect on the recombination process of PCDTBT:PC71BM organic solar cells. Org. Electron. 14, 74 (2013).CrossRefGoogle Scholar
Uhrich, C., Schueppel, R., Petrich, A., Pfeiffer, M., Leo, K., Brier, E., Kilickiran, P., and Baeuerle, P.: Organic thin-film photovoltaic cells based on oligothiophenes with reduced band gap. Adv. Funct. Mater. 17, 2991 (2007).CrossRefGoogle Scholar
Chiguvare, Z., Parisi, J., and Dyakonov, V.: Current limiting mechanisms in indium-tin-oxide/poly3-hexylthiophene/aluminum thin film devices. J. Appl. Phys. 94, 2440 (2003).CrossRefGoogle Scholar
Mihailetchi, V.D., Xie, H.X., de Boer, B., Koster, L.J.A., and Blom, P.W.M.: Charge transport and photocurrent generation in poly(3-hexylthiophene): Methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 16, 699 (2006).CrossRefGoogle Scholar
Zhao, W., Li, S., Yao, H., Zhang, S., Zhang, Y., Yang, B., and Hou, J.: Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148 (2017).CrossRefGoogle ScholarPubMed
Islam, M.S.: Analytical modeling of organic solar cells including monomolecular recombination and carrier generation calculated by optical transfer matrix method. Org. Electron. 41, 143 (2017).CrossRefGoogle Scholar
Li, Y., Arumugam, S., Krishnan, C., Charlton, M.D.B., and Beeby, S.P.: Encapsulated textile organic solar cells fabricated by spray coating. ChemistrySelect 4, 407 (2019).CrossRefGoogle Scholar
Ran, N.A., Roland, S., Love, J.A., Savikhin, V., Takacs, C.J., Fu, Y-T., Li, H., Coropceanu, V., Liu, X., Brédas, J-L., Bazan, G.C., Toney, M.F., Neher, D., and Nguyen, T-Q.: Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency. Nat. Commun. 8, 79 (2017).CrossRefGoogle ScholarPubMed
Gholamkhass, B. and Servati, P.: Solvent-vapor induced morphology reconstruction for efficient PCDTBT based polymer solar cells. Org. Electron. 14, 2278 (2013).CrossRefGoogle Scholar