Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T00:04:04.639Z Has data issue: false hasContentIssue false

Effects of IrO2/Pt Hybrid Electrodes on the Crystallization and Ferroelectric Performances of Sol-gel-derived Pb(Zr,Ti)O3 Thin Film Capacitors

Published online by Cambridge University Press:  31 January 2011

Seung-Hyun Kim
Affiliation:
Inostek Inc., 356-1 Gasan-dong, Keumchun-gun, Seoul 153-023, Korea
Dong-Yeon Park
Affiliation:
Inostek Inc., 356-1 Gasan-dong, Keumchun-gun, Seoul 153-023, Korea
Hyun-Jung Woo
Affiliation:
Inostek Inc., 356-1 Gasan-dong, Keumchun-gun, Seoul 153-023, Korea
Dong-Soo Lee
Affiliation:
Inostek Inc., 356-1 Gasan-dong, Keumchun-gun, Seoul 153-023, Korea
Jowoong Ha
Affiliation:
Inostek Inc., 356-1 Gasan-dong, Keumchun-gun, Seoul 153-023, Korea
Cheol Song Hwang
Affiliation:
School of Materials Science and Engineering, Seoul National University, Seoul 151-743, Korea
Get access

Abstract

The effects of IrO2/Pt layered hybrid bottom and/or top electrode structures on the leakage current density versus voltage (J–V), polarization versus voltage (P–V), ferroelectric imprint, and fatigue properties of chemical-solution-derived Pb(ZrxTi1−x)O3 (PZT, Zr/Ti = 35/65) thin films were investigated. The best P–V and J–V performances were obtained from a capacitor with nonhybrid electrodes (Pt/PZT/Pt capacitor). However, the poor fatigue performance of the capacitor required the adoption of hybrid electrode structures. A thin IrO2 layer, as thin as 6 nm, which was inserted between top Pt electrode and PZT layer was sufficient for improving the fatigue performance without any degradation of the other ferroelectric properties. However, the same layer adopted on the bottom Pt electrode was not effective in improving the fatigue performance with degradation in P–V and J–V properties. This was ascribed to IrO2 layer dissolution into the PZT layer during the crystallization annealing of the PZT thin film. A thicker IrO2 layer resulted in more serious degradation.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dawber, M. and Scott, J.F., Appl. Phys. Lett. 76, 1060 (2000); M. Dawber and J.F. Scott, Appl. Phys. Lett. 76, 3655 (2000).CrossRefGoogle Scholar
Kim, S-H., Hong, J.G., Streiffer, S.K., and Kingon, A.I., J. Mater. Res. 14, 1018 (1999).CrossRefGoogle Scholar
Tagantsev, A., Presented in the 12th International Symposium on Integrated Ferroelectrics, Aachen, Germany, 1215, 2000 (unpublished).Google Scholar
Auciello, O., Gifford, K.D., and Kingon, A.I., Appl. Phys. Lett. 64, 2873 (1994).CrossRefGoogle Scholar
Chung, I.S., Lee, J.K., Lee, W.I., Chung, C.W., and Desu, S.B., in Ferroelectric Thin Films, edited by Tuttle, B.A., Desu, S.B., Ramesh, R., and Shiosaki, T. (Mater. Res. Soc. Proc. 361, Pittsburgh, PA, 1995), pp. 249254.Google Scholar
Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V.G., Haakenaasen, R., and Fork, D.K., Appl. Phys. Lett. 63, 3592 (1993).CrossRefGoogle Scholar
Cross, J., Fujiki, M., Tsukada, M., Matsuura, K., and Ontani, S., Jpn. J. Appl. Phys. Lett. 38, L448 (1999).CrossRefGoogle Scholar
Kim, S-H., Kim, C.E., and Oh, Y.J., Thin Solid Films 305, 321 (1997).CrossRefGoogle Scholar
Takahashi, Y. and Yamaguchi, J., J. Mater. Sci. 25, 3950 (1990).CrossRefGoogle Scholar
Willems, G.J., Wouters, D.J., Maes, H.E., and Nouwen, R., Integr. Ferroelectr. 15, 19 (1997).CrossRefGoogle Scholar
Kim, C.J., Yoon, D.S., Jiang, Z.T., and No, K.S.. J. Mater. Sci. 32, 1213 (1997).CrossRefGoogle Scholar
Al-Shareef, H.N., Bellur, K.R., Auciello, O., and Kingon, A.I., Ferroelectrics 152, 85 (1994).CrossRefGoogle Scholar
Kwok, C.K. and Desu, S.B., J. Mater. Res. 8(2), 339 (1993).CrossRefGoogle Scholar
Shin, J.C., Park, J., Hwang, C.S., and Kim, H.J., J. Appl. Phys. 86, 506 (1999).CrossRefGoogle Scholar
Al-Shareef, H.N., Bellur, K.R., Auciello, O., and Kingon, A.I., Thin Solid Films 256, 73 (1995).CrossRefGoogle Scholar
Longo, J.M., Raccah, P.M., and Goodenough, J.B., Mater. Res. Bull. 4, 191 (1969).CrossRefGoogle Scholar
Al-Shareef, H.N., Gifford, K.D., Ameen, M.S., Rou, S.H., Hren, P.D., Auciello, O., and Kingon, A.I., Ceram. Trans. 25, 97 (1992).Google Scholar
Arlt, G. and Neumann, H., Ferroelectrics 87, 109 (1988).CrossRefGoogle Scholar
Park, B.H., Hyun, S.J., Moon, C.R., Choi, B.D., Lee, J., Kim, C.Y., Jo, W., and Noh, T.W., J. Appl. Phys. 84, 4428 (1998).CrossRefGoogle Scholar
Warren, W.L., Dimos, D., Pike, G.E., and Vanheusden, K.V., Appl. Phys. Lett. 67, 1689 (1995).CrossRefGoogle Scholar
Kim, S-H., Lee, D-S., Hwang, C.S., Kim, D-J., and Kingon, A.I., Appl. Phys. Lett. 77(19), 3036 (2000).CrossRefGoogle Scholar
Kim, S-H., Woo, H-J., Ha, J., Hwang, C.S., and Kingon, A.I., Appl. Phys. Lett. 78, 2885 (2001).CrossRefGoogle Scholar
Stolichnov, I., Tagantsev, A., Setter, N., Cross, J., and Tsukada, M., Appl. Phys. Lett. 74, 3552 (1999).CrossRefGoogle Scholar