Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T04:01:12.345Z Has data issue: false hasContentIssue false

Effects of microstructural evolution on the thermal conductivity of α–Al2O3 prepared from nano-size γ–Al2O3 powder

Published online by Cambridge University Press:  31 January 2011

Eduardo J. Gonzalez
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Grady White
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Lanhua Wei
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

The thermal diffusivities (D) of porous α–Al2O3 specimens prepared from nano-size γ–Al2O3 powder and from conventional submicrometer-size alumina powders were measured at room temperature, and the thermal conductivity (κ) was calculated from D. Plots of κ versus the volume fraction of porosity (P) showed that the data from both sets of samples followed similar linear curves. Similarly, data of Vickers hardness versus P obtained from the same specimens also followed a single linear curve. The good correlation of thermal diffusivity with P suggests that grain boundaries have a lesser effect on thermal transport than porosity.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Parrott, J.E. and Stuckes, A.D., Thermal Conductivity of Solids (Pion Limited, London, United Kingdom, 1975).Google Scholar
2.Gallas, M.R., Hockey, B., Pechenik, A., and Piermarini, G.J., J. Am. Ceram. Soc. 77, 2107 (1994).Google Scholar
3.Chen, W., Pechenik, A., Dapkunas, S.J., Piermarini, G.J., and Malghan, S.G., J. Am. Ceram. Soc. 77, 1005 (1994).CrossRefGoogle Scholar
4.Kuo, P.K., Sendler, E.D., Farvo, L.D., and Thomas, R.L., Can. J. Phys. 64, 1168 (1986).CrossRefGoogle Scholar
5.Wei, L., Ph.D. Dissertation, Wayne State University, Detroit, MI (1992).Google Scholar
6.Josell, D., Gonzalez, E.J., and White, G.S., J. Mater. Res. 13, 1117 (1998).CrossRefGoogle Scholar
7.Gonzalez, E.J., Hockey, B., and Piermarini, G.J., Mater. Manuf. Processes 11, 95 (1996).CrossRefGoogle Scholar
8.Incropera, F.P. and DeWitt, , Fundamentals of Heat Transfer (John Wiley & Sons, New York, 1981).Google Scholar
9.CRC Handbook of Chemistry and Physics, 78th ed. (CRC Press, Boca Raton, FL, 19971998).Google Scholar
10.Francl, J. and Kingery, W.D., J. Am. Ceram. Soc. 37, 80 (1954).Google Scholar
11.Francl, J. and Kingery, W.D., J. Am. Ceram. Soc. 37, 99 (1954).CrossRefGoogle Scholar
12.Loeb, A.L., J. Am. Ceram. Soc. 37, 96 (1954).Google Scholar
13.Spriggs, R.M., J. Am. Ceram. Soc. 44, 628 (1961).CrossRefGoogle Scholar
14.Koh, J.C.Y and Fortini, A., Int. J. Heat Mass Transfer 16, 20132022 (1973).CrossRefGoogle Scholar
15.Knudsen, F.P., J. Am. Ceram. Soc. 42, 376 (1959).CrossRefGoogle Scholar
16.Rice, R.W., J. Mater. Sci. 31, 102 (1996).CrossRefGoogle Scholar
17.Krell, A. and Blank, P., J. Am. Ceram. Soc. 78, 1118 (1995).CrossRefGoogle Scholar
18.Josell, D., Cezairlizan, A., and Bonevich, J.E., Int. J. Thermophys. 19, 525 (1998).Google Scholar