Published online by Cambridge University Press: 03 March 2011
Nanocrystal-(Ti,Al)xN1-x/amorphous-SiyN1-y nanolaminate films were deposited periodically under different nitrogen flow rates. The composition, microstructure and mechanical properties of nanolaminate films were investigated by x-ray photoelectron spectroscope, x-ray diffractometer, scanning and transmission electron microscopy, atomic force microscope, and nanoindentation apparatus. Results indicated that the formation of the compound on the target surface was substantially influenced by the deposition rate, composition and crystallite size of the nanolaminate films. Nanolaminate structure with periodic compositional modulation and sharp interfaces were deposited at different nitrogen flow rate. Smaller nanocrystallite size, round-shaped grain features, smoother surface morphology, higher hardness, and reduced elastic modulus were obtained for nanolaminate films with increasing the nitrogen flow rate.