Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T17:32:55.820Z Has data issue: false hasContentIssue false

Effects of partial crystallization on compression and fatigue behavior of Zr-based bulk metallic glasses

Published online by Cambridge University Press:  03 March 2011

G.Y. Wang*
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
P.K. Liaw
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
Y. Yokoyama
Affiliation:
Advanced Research Center of Metallic Glasses, Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
M. Freels
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
R.A. Buchanan
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
A. Inoue
Affiliation:
Advanced Research Center of Metallic Glasses, Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
C.R. Brooks
Affiliation:
Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996
*
a) Address all correspondence to this author. e-mail: gwang@utk.edu
Get access

Abstract

Zr50Cu40Al10, Zr50Cu30Al10Ni10, and Zr50Cu37Al10Pd3 (in at.%) are bulk metallic glasses (BMGs) with partial crystallization that were characterized by x-ray diffraction (XRD). The study of mechanical properties was conducted in compression at room temperature. Four-point-bend fatigue experiments were performed on the zirconium (Zr)-based BMGs in air. Under compressive loading, after the elastic deformation, no obvious plasticity occurred before the final shear fracture. The compression strengths are comparable to those of fully amorphous alloys. However, the fatigue-endurance limits of these BMGs were much lower than those of fully amorphous alloys. These results suggested that the fatigue behavior of a BMG is very sensitive to the microstructure, while the compression strength is not.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
2Johnson, W.L.: Bulk amorphous metal—An emerging engineering material. JOM 54, 40 (2002).CrossRefGoogle Scholar
3Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
4Loffler, J.F.: Bulk metallic glasses. Intermetallics 11, 529 (2003).CrossRefGoogle Scholar
5Inoue, A., Shen, B.L., Koshiba, H., Kato, H., and Yavari, A.R.: Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat. Mater. 2, 661 (2003).CrossRefGoogle ScholarPubMed
6Inoue, A. and Shen, B.L.: A new Fe-based bulk glassy alloy with outstanding mechanical properties. Adv. Mater. 16, 2189 (2004).Google Scholar
8Li, Q.K. and Li, M.: Effects of surface imperfections on deformation and failure of amorphous metals. Appl. Phys. Lett. 87, 031910 (2005).CrossRefGoogle Scholar
9Ott, R.T., Fan, C., Li, J., and Hufnagel, T.C.: Structure and properties of Zr-Ta-Cu-Ni-Al bulk metallic glasses and metallic glass matrix composites. J. Non-Cryst. Solids 317, 158 (2003).CrossRefGoogle Scholar
10He, G., Löser, W., Eckert, J., and Schultz, L.: Phase transformation and mechanical properties of Zr-base bulk glass-forming alloys. Mater. Sci. Eng., A. 352, 179 (2003).Google Scholar
11Choi-Yim, H., Conner, R.D., Szuecs, F., and Johnson, W.L.: Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 50, 2737 (2002).Google Scholar
12Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., and Higashi, K.: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002).CrossRefGoogle Scholar
13Li, H., Fan, C., Tao, K., Choo, H., and Liaw, P.: Compressive behavior of a Zr-based metallic glass at cryogenic temperatures. Adv. Mater. 18, 752 (2006).CrossRefGoogle Scholar
14Fan, C., Li, H., Kecskes, L.J., Tao, K., Choo, H., Liaw, P.K., and Liu, C.T.: Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures. Phys. Rev. Lett. 96, 145506 (2006).CrossRefGoogle ScholarPubMed
15Gilbert, C.J., Lippmann, J.M., and Ritchie, R.O.: Fatigue of a Zr-Ti-Cu-Ni-Be bulk amorphous metal: Stress/life and crack-growth behavior. Scripta Mater. 38, 537 (1998).Google Scholar
16Hess, P.A., Menzel, B.C., and Dauskardt, R.H.: Fatigue damage in bulk metallic glass II: Experiments. Scripta Mater. 54, 355 (2006).Google Scholar
17Peter, W.H., Liaw, P.K., Buchanan, R.A., Liu, C.T., Brooks, C.R., Horton, J.A. Jr., Carmichael, C.A. Jr., and Wright, J.L.: Fatigue behavior of Zr52.5Al10Ti5Cu17.9Ni14.6 bulk metallic glass. Intermetallics 10, 1125 (2002).Google Scholar
18Wang, G.Y., Liaw, P.K., Peter, W.H., Yang, B., Yokoyama, Y., Benson, M.L., Green, B.A., Kirkham, M.J., White, S.A., Saleh, T.A., McDaniels, R.L., Steward, R.V., Buchanan, R.A., Liu, C.T., and Brooks, C.R.: Fatigue behavior of bulk-metallic glasses. Intermetallics 12, 885 (2004).Google Scholar
19Wang, G.Y., Liaw, P.K., Peter, W.H., Yang, B., Freels, M., Yokoyama, Y., Benson, M.L., Green, B.A., Saleh, T.A., McDaniels, R.L., Steward, R.V., Buchanan, R.A., Liu, C.T., and Brooks, C.R.: Fatigue behavior and fracture morphology of Zr50Al10Cu40 and Zr50Al10Cu30Ni10 bulk-metallic glasses. Intermetallics 12, 1219 (2004).Google Scholar
20Yokoyama, Y., Liaw, P.K., Nishijima, M., Hiraga, K., Buchanan, R.A., and Inoue, A.: Fatigue-strength enhancement of cast Zr50Cu40Al10 glassy alloys. Mater. Trans., JIM 47, 1286 (2006).Google Scholar
21Spaepen, F.: Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Mater. 25, 407 (1977).CrossRefGoogle Scholar
22Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).Google Scholar
23Schuh, C.A., Argon, A.S., Nieh, T.G., and Wadsworth, J.: The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philos. Mag. 83, 2585 (2003).CrossRefGoogle Scholar
24Zhang, G.P., Wang, W., Zhang, B., Tan, J., and Liu, C.S.: On rate-dependent serrated flow behavior in amorphous metals during nanoindentation. Scripta Mater. 52, 1147 (2005).CrossRefGoogle Scholar
25Chen, H.S.: Plastic-flow in metallic glasses under compression. Scripta Mater. 7, 931 (1973).Google Scholar
26Wright, W.J., Saha, R., and Nix, W.D.: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans., JIM 42, 642 (2001).CrossRefGoogle Scholar
27Hufnagel, T.C., El-Deiry, P., and Vinci, R.P.: Development of shear band structure during deformation of a Zr57Ti5Cu20Ni8Al10 bulk metallic glass. Scripta Mater. 43, 1071 (2000).Google Scholar
28Hufnagel, T.C., Fan, C., Otta, R.T., Li, J., and Brennan, S.: Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics 10, 1163 (2002).CrossRefGoogle Scholar
29Jiang, W.H., Fan, G.J., Liu, F.X., Wang, G.Y., Choo, H., and Liaw, P.K.: Rate dependence of shear banding and serrated flows in a bulk metallic glass. J. Mater. Res. 21, 2164 (2006).Google Scholar
30Gu, X., Jiao, T., Kecskes, L.J., Woodman, R.H., Fan, C., Ramesh, K.T., and Hufnagel, T.C.: Crystallization and mechanical behavior of (Hf, Zr)-Ti-Cu-Ni-Al metallic glasses. J. Non-Cryst. Solids 317, 112 (2003).CrossRefGoogle Scholar
31Xing, L.Q., Bertrand, C., Dallas, J.P., and Cornet, M.: Deformation behavior of partially crystallized Zr57Ti5Al10Cu20Ni8 bulk amorphous alloy. Mater. Lett. 34, 90 (1998).CrossRefGoogle Scholar
32Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J., and Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 (1998).CrossRefGoogle Scholar
33Eckert, J., Kühn, U., Mattern, N., He, G., and Gebert, A.: Structural bulk metallic glasses with different length-scale of constituent phases. Intermetallics 10, 1183 (2002).Google Scholar
34Yokoyama, Y., Inoue, K., and Fukaura, K.: Pseudo float melting state in ladle arc-melt-type furnace for preparing crystalline inclusion-free bulk amorphous alloy. Mater. Trans., JIM 43, 2316 (2002).Google Scholar
35Sergueeva, A.V., Mara, N.A., Kuntz, J.D., Lavernia, E.J., and Mukherjee, A.K.: Shear band formation and ductility in bulk metallic glass. Philos. Mag. 85, 2671 (2005).Google Scholar
36Yokoyama, Y., Fukaura, K., and Inoue, A.: Effect of Ni addition on fatigue properties of bulk glassy Zr50Cu40Al10 alloys. Mater. Trans. 45, 1672 (2004).Google Scholar
37Wang, G.Y., Liaw, P.K., Yokoyama, Y., Peter, W.H., Yang, B., Freels, M., Buchanan, R.A., Liu, C.T., and Brooks, C.R.: Influence of air and vacuum environment on fatigue behavior of Zr-based bulk metallic glasses. J. Alloys Compd. (in press).Google Scholar
38Zhang, Z.F., Eckert, J., and Schultz, L.: Fatigue and fracture behavior of bulk metallic glass. Metall. Mater. Trans. A 35, 3489 (2004).Google Scholar
39Schijve, J.: Fatigue of Structures and Materials (Kluwer Academic Publishers, Boston, MA 2001).Google Scholar
40Peter, W.H.: Fatigue Behavior of A Zirconium-Based Bulk Metallic Glass Ph.D. Thesis, University of Tennessee (2005).Google Scholar
41Wang, G.Y., Liaw, P.K., Peker, A., Freels, M., Peter, W.H., Buchanan, R.A., and Brooks, C.R.: Comparison of fatigue behavior of a bulk metallic glass and its composite. Intermetallics 14, 1091 (2006).CrossRefGoogle Scholar
42Flores, K.M., Johnson, W.L., and Dauskardt, R.H.: Fracture and fatigue behavior of a Zr-Ti-Nb ductile phase reinforced bulk metallic glass matrix composite. Scripta Mater. 49, 1181 (2003).CrossRefGoogle Scholar
43Menzel, B.C. and Dauskardt, R.H.: Stress-life fatigue behavior of a Zr-based bulk metallic glass. Acta Mater. 54, 935 (2006).Google Scholar
44Conner, R.D., Choi-Yim, H., and Johnson, W.L.: Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites. J. Mater. Res. 14, 3292 (1999).Google Scholar
45Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed
46Szuecs, F., Kim, C.P., and Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).Google Scholar
47Gilbert, C.J., Schroeder, V., and Ritchie, R.O.: Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall. Mater. Trans. A 30, 1739 (1999).CrossRefGoogle Scholar