Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T05:24:16.682Z Has data issue: false hasContentIssue false

Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries

Published online by Cambridge University Press:  11 March 2011

Nurul H. Idris
Affiliation:
Institute for Superconducting and Electronic Materials, ARC Center of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2519, Australia Department of Physical Sciences, Faculty of Science, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
Jiazhao Wang*
Affiliation:
Institute for Superconducting and Electronic Materials, ARC Center of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2519, Australia
Shulei Chou
Affiliation:
Institute for Superconducting and Electronic Materials, ARC Center of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2519, Australia
Chao Zhong
Affiliation:
Institute for Superconducting and Electronic Materials, ARC Center of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2519, Australia
Md. Mokhlesur Rahman
Affiliation:
Institute for Superconducting and Electronic Materials, ARC Center of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2519, Australia
Huakun Liu
Affiliation:
Institute for Superconducting and Electronic Materials, ARC Center of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2519, Australia
*
a)Address all correspondence to this author. e-mail: jiazhao@uow.edu.au
Get access

Abstract

Nickel oxide–polypyrrole (NiO–PPy) composites for lithium-ion batteries were prepared by a chemical polymerization method with sodium p-toluenesulfonate as the dopant, Triton-X as the surfactant, and FeCl3 as the oxidant. The new composite material was characterized by Raman spectroscopy, thermogravimetric analysis, scanning electron microscopy, and field-emission scanning electron microscopy. Nanosize conducting PPy particles with a cauliflower-like morphology were uniformly coated onto the surface of the NiO powder. The electrochemical results were improved for the NiO–PPy composite compared with the pristine NiO. After 30 cycles, the capacities of the NiO and the NiO–PPy composite were about 119 and 436 mAh·g−1, respectively, indicating that the electrochemical performance of the composite was significantly improved.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Taberna, P.L., Mitra, S., Poizot, P., Simon, P., and Tarascon, J.M.: High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567 (2006).CrossRefGoogle ScholarPubMed
2.Varghese, B., Reddy, M.V., Zhu, Y., Chang, S.L., Teo, C.H., Subba Rao, G.V., Chowdari, B.V.R., Shen Wee, Andrew Thye, Chwee, T.L., and Sow, C.H.: Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater. 20(10), 3360 (2008).CrossRefGoogle Scholar
3.Wang, G.X., Chen, Y., Konstantinov, K., Lindsay, M., Liu, H.K., and Dou, S.X.: Investigation of cobalt oxides as anode materials for Li-ion batteries. J. Power Sources 109, 142 (2002).CrossRefGoogle Scholar
4.Chou, S.L., Wang, J.Z., Liu, H.K., and Dou, S.X.: Electrochemical deposition of porous Co(OH)2 nanoflake films on stainless steel mesh for flexible supercapacitors. J. Electrochem. Soc. 155, A926 (2008).CrossRefGoogle Scholar
5.Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., and Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496 (2000).CrossRefGoogle ScholarPubMed
6.Zhang, W.M., Wu, X.L., Hu, J.S., Guo, Y.G., and Wan, L.J.: Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 18, 3941 (2008).CrossRefGoogle Scholar
7.Qiao, H., Xiao, L., Zheng, Z., Liu, H., Jia, F., and Zhang, L.: One-pot synthesis CoO/C hybrid microspheres as anode materials for lithium-ion batteries. J. Power Sources 185, 486 (2008).CrossRefGoogle Scholar
8.Courtney, I.A., McKinnon, W.R., and Dahn, J.R.: On the aggregation of tin in SnO composite glasses caused by the reversible reaction with lithium. J. Electrochem. Soc. 146, 59 (1999).CrossRefGoogle Scholar
9.Huang, X.H., Tu, J.P., Zhang, C.Q., Chen, X.T., Yuan, Y.F., and Wu, H.M.: Spherical NiO-C composite for anode material of lithium ion batteries. Electrochim. Acta. 52, 4177 (2007).CrossRefGoogle Scholar
10.Yuan, L., Wang, J., Chew, S.Y., Chen, J., Guo, Z.P., Zhao, L., Konstantinov, K., and Liu, H.K.: Synthesis and characterization of SnO2-polypyrrole composite for lithium-ion battery. J. Power Sources 174, 1183 (2007).CrossRefGoogle Scholar
11.Ng, S.H., Wang, J., Wexler, D., Konstantinov, K., Guo, Z.P., and Liu, H.K.: Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 45, 6896 (2006).CrossRefGoogle ScholarPubMed
12.Huang, X.H., Tu, J.P., Xia, X.H., Wang, X.L., and Xiang, J.Y.: Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries. Electrochem. Commun. 10, 1288 (2008).CrossRefGoogle Scholar
13.Chew, S.Y., Guo, Z.P., Wang, J.Z., Chen, J., Munroe, P., Ng, S.H., Zhao, L., and Liu, H.K.: Nanostructured nickel sulfide synthesized via a polyol route as a cathode material for rechargeable lithium battery. Electrochem. Commun. 9, 1877 (2007).Google Scholar
14.Wang, J., Chen, J., Konstantinov, K., Zhao, L., Ng, S.H., Wang, G.X., Guo, Z.P., and Liu, H.K.: Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochim. Acta. 51, 4634 (2006).CrossRefGoogle Scholar
15.Wang, G.X., Yang, L., Chen, Y., Wang, J.Z., Bewlay, S., and Liu, H.K.: An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochim. Acta. 50, 4649 (2005).CrossRefGoogle Scholar
16.Du Pasquier, A., Orsini, F., Gozdz, A.S., and Tarascon, J.M.: Electrochemical behaviour of LiMn2O4-PPy composite cathodes in the 4-V region. J. Power Sources 81, 607 (1999).CrossRefGoogle Scholar
17.Guo, Z.P., Wang, J.Z., Liu, H.K., and Dou, S.X.: Study of silicon/polypyrrole composite as anode materials for Li-ion batteries. J. Power Sources 146, 448 (2005).CrossRefGoogle Scholar
18.Liu, Y.C., Hwang, B.J., Jian, W.J., and Santhanan, R.: In situ cyclic voltammetry-surface-enhanced Raman spectroscopy: Studies on the doping-undoping of polypyrrole film. Thin Solid Films 374, 85 (2000).CrossRefGoogle Scholar
19.Zhong, C., Wang, J.Z., Chou, S.L., Konstantinov, K., Rahman, M., and Liu, H.K.: Nanocrystalline NiO hollow spheres in conjunction with CMC for lithium-ion batteries. J. Appl. Electrochem. 40, 1415 (2010).CrossRefGoogle Scholar
20.Nishio, K., Fujimoto, M., Ando, O., Ono, H., and Murayama, T.: Characteristics of polypyrrole chemically synthesized by various oxidizing reagents. J. Appl. Electrochem. 26, 425 (1996).CrossRefGoogle Scholar
21.Rahman, M.M., Chou, S.L., Zhong, C., Wang, J.Z., Wexler, D., and Liu, H.K.: Spray pyrolyzed NiO–C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention. Solid State Ionics 180, 1646 (2010).CrossRefGoogle Scholar
22.Huang, X.H., Tu, J.P., Xia, X.H., Wang, X.L., Xiang, J.Y., Zhang, L., and Zhou, Y.: Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries. J. Power Sources 188, 588 (2009).CrossRefGoogle Scholar
23.Grugeon, S., Laruelle, S., Herrera-Urbina, R., Dupont, L., Poizot, P., and Tarascon, J.M.: Particle size effects on the electrochemical performance of copper oxides toward lithium. J. Electrochem. Soc. 148, A285 (2001).CrossRefGoogle Scholar
24.Huang, X.H., Tu, J.P., Zhang, C.Q., and Xiang, J.Y.: Net-structured NiO-C nanocomposite as Li-intercalation electrode material. Electrochem. Commun. 9, 1180 (2007).CrossRefGoogle Scholar
25.Veeraraghavan, B., Paul, J., Haran, B., and Popov, B.: Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries. J. Power Sources 109, 377 (2002).CrossRefGoogle Scholar
26.Ng, S.H., Wang, J., Konstantinov, K., Wexler, D., Chen, J., and Liu, H.K.: Spray pyrolyzed PbO-carbon nanocomposites as anode for lithium-ion batteries. J. Electrochem. Soc. 153, A787 (2006).CrossRefGoogle Scholar
27.Fan, J. and Fedkiw, P.S.: Electrochemical impedance spectra of full cells: Relation to capacity and capacity-rate of rechargeable Li cells using LiCoO2, LiMn2O4, and LiNiO2 cathodes. J. Power Sources 72, 165 (1998).CrossRefGoogle Scholar
28.Aifantis, K.E., Brutti, S., Hackney, S.A., Sarakonsri, T., and Scrosati, B.: SnO2/C nanocomposites as anodes in secondary Li-ion batteries. Electrochim. Acta 55, 5071 (2010).CrossRefGoogle Scholar