Published online by Cambridge University Press: 15 February 2018
The influences of pressure and aging treatment on microstructures and mechanical properties of rheo-squeeze casting (RSC) Mg–3Nd–0.2Zn–0.4Zr alloys were studied. It was found that the nucleation rate, solid solubility of Nd and Zn in the α-Mg matrix, and dislocation density were increased with increasing applied pressure. After aging treatment, the amount of the Zn2Zr3 phase was increased with increasing pressure; β″ phase and β′ precipitates were observed in the RSC alloy and finer β′ precipitates formed in the permanent mold casting (PMC) alloy. The mechanical properties of as-cast alloys were initially increased and then decreased with increasing pressure, while the properties of T6-treated alloys were increased continuously. Due to the larger grain boundary strengthening contribution, the T6-treated RSC sample showed higher mechanical properties than the PMC sample, and the yield strength, ultimate tensile strength, and elongation could reach 165 MPa, 309 MPa, and 5.7%, respectively.
Contributing Editor: Jürgen Eckert