Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-29T10:18:45.934Z Has data issue: false hasContentIssue false

Effects of rare earth on the structure and properties of Mg–6Zn–5Al–4Gd–1RE (RE = Ce or Y) alloys

Published online by Cambridge University Press:  31 January 2011

Wenlong Xiao
Affiliation:
Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025, China; and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun 130022, China
Shusheng Jia
Affiliation:
Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun 130025, China
Jianli Wang*
Affiliation:
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun 130022, China; and Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
Jie Yang
Affiliation:
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun 130022, China; and Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
Lidong Wang
Affiliation:
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun 130022, China
Limin Wang
Affiliation:
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun 130022, China
*
a)Address all correspondence to this author. e-mail: lmwang@ciac.jl.cn
Get access

Abstract

The microstructures and mechanical properties of Mg–6Zn–5Al–4Gd–1RE (RE = Ce or Y) alloys were investigated. The addition of Ce or Y obviously refines the grain size for the Mg–6Zn–5Al–4Gd-based alloy, while the Y element has a better refining effect. The Ce and Y show different grain-refining mechanisms: Ce addition mostly promotes the growth of secondary dendrite, while Y addition mainly increases the heterogeneous nucleation sites. The hardness-versus-aging time curves indicate that all the alloys have excellent aging-hardening behavior, but the response to maximum hardness was delayed by the Ce or Y addition. The microstructure observation of the peak-aged alloys indicated a large number of nanocrystalline τ-Mg32(Al, Zn)49 precipitates in the matrix. The Y addition is beneficial to improve the mechanical properties, and the alloy has optimal values. However, the Ce addition decreases the ultimate tensile strength and elongation of the alloy due to formation of a lot of shrinkage porosities.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Beals, R.S., Tissington, C., Zhang, X.M., Kainer, K., Petrillo, J., Verbrugge, M., Pekguleryuz, M.: Magnesium global development: Outcomes from the TMS 2007 annual meeting. JOM 59, 39 2007CrossRefGoogle Scholar
2Dobrzański, L.A., Tański, T., |$ˇCížek, L., Brytan, Z.: Structure and properties of magnesium cast alloys. J. Mater. Process. Technol. 192–193, 567 2007CrossRefGoogle Scholar
3Luo, A.A.: Recent magnesium alloy development for elevated temperature applications. Int. Mater. Rev. 49, 13 2004CrossRefGoogle Scholar
4Pekguleryuz, M.O., Kaya, A.A.: Creep resistant magnesium alloys for powertrain applications. Adv. Eng. Mater. 5, 866 2003CrossRefGoogle Scholar
5Lee, S.G., Gokhale, A.M.: Visualization of three-dimensional pore morphologies in a high-pressure die-cast Mg–Al–RE alloy. Scr. Mater. 56, 501 2007CrossRefGoogle Scholar
6Aghion, E., Bronfin, B., Von Buch, F., Schumann, S., Friedrich, H.: Newly developed magnesium alloys for powertrain applications. JOM 55, 30 2003CrossRefGoogle Scholar
7Moreno, I.P., Nandy, T.K., Jones, J.W., Allison, J.E., Pollock, T.M.: Microstructural stability and creep of rare-earth containing magnesium alloys. Scr. Mater. 48, 1029 2003CrossRefGoogle Scholar
8Zhang, Z., Couture, A., Luo, A.: An investigation of the properties of Mg–Zn–Al alloys. Scr. Mater. 39, 45 1998CrossRefGoogle Scholar
9Vogel, M., Kraft, O., Arzt, E.: Creep behavior of magnesium die-cast alloy ZA85. Scr. Mater. 48, 985 2003CrossRefGoogle Scholar
10Zhang, J., Guo, Z.X., Pan, F.S., Li, Z.S., Luo, X.D.: Effect of composition on the microstructure and mechanical properties of Mg–Zn–Al alloys. Mater. Sci. Eng. 456, 43 2007CrossRefGoogle Scholar
11Zhang, Z., Tremblay, R., Dubé, D.: Microstructure and mechanical properties of ZA104 (0.3–0.6Ca) die-casting magnesium alloys. Mater. Sci. Eng. 385, 286 2004CrossRefGoogle Scholar
12Mendis, C.L., Muddle, B.C., Nie, J.F.: Characterization of intermetallic particles in a Mg–8Zn–4Al–0.5Ca (wt%) casting alloy. Philos. Mag. Lett. 86, 755 2006CrossRefGoogle Scholar
13Wang, Y.X., Guan, S.K., Zeng, X.Q., Ding, W.J.: Effects of RE on the microstructure and mechanical properties of Mg-8Zn-4Al magnesium alloy. Mater. Sci. Eng. 416, 109 2006CrossRefGoogle Scholar
14Xiao, W.L., Jia, S.S., Wang, J., Wang, J.L., Wang, L.M.: Investigation on the microstructure and mechanical properties of a cast Mg–6Zn–5Al–4RE alloy. J. Alloys Compd. 458, 178 2008CrossRefGoogle Scholar
15Cordier, G., Czech, E., Schäfer, H., Woll, P.: Structural characterization of new ternary compounds of uranium and cerium. J. Less-Common Met. 110, 327 1985CrossRefGoogle Scholar
16Bourgeois, L., Muddle, B.C., Nie, J.F.: The crystal structure of the equilibrium Φ phase in Mg–Zn–Al casting alloys. Acta Mater. 49, 2701 2001CrossRefGoogle Scholar
17Donnadieu, P., Quivy, A., Tarfa, T., Ochin, P., Dezellus, A.: On the crystal structure and stability range of the ternary phase in the Mg–Al–Zn system. Z. Metallkd. 88, 911 1997Google Scholar
18Ma, Y.Q., Chen, R.S., Han, E.H.: Keys to improving the strength and ductility of the AZ64 magnesium alloy. Mater. Lett. 61, 2527 2007CrossRefGoogle Scholar
19Clark, J.B., Rhines, F.N.: Diffusion-layer formation in the ternary system aluminum-magnesium-zinc. Trans. Am. Soc. Met. 51, 199 1959Google Scholar
20Li, J.P., Yang, Z., Liu, T., Guo, Y.C., Xia, F., Yang, J.M., Liang, M.X.: Microstructures of extruded Mg–12Gd–1Zn–0.5Zr and Mg–12Gd–4Y–1Zn–0.5Zr alloys. Scr. Mater. 56, 137 2007CrossRefGoogle Scholar
21Drits, M.E., Rokhlin, L.L., Nikitina, N.I.: Phase diagram for Mg–Y–Gd in the magnesium-rich region. lzv. Akad. Nauk SSSR Met. 5, 215 1983Google Scholar
22Vogel, M., Kraft, O., Dehm, G., Arzt, E.: Quasi-crystalline grain-boundary phase in the magnesium die-cast alloy ZA85. Scr. Mater. 45, 517 2001CrossRefGoogle Scholar
23Liu, Y.Q., Qian, M., Fan, Z.: Microstructure and mechanical properties of a rheo-diecast Mg–10Zn–4.5Al alloy. Mater. Trans. 46, 2221 2005CrossRefGoogle Scholar
24Zou, H.H., Zeng, X.Q., Zhai, C.Q., Ding, W.J.: Effects of Nd on the microstructure of ZA52 alloy. Mater. Sci. Eng. 392, 229 2005CrossRefGoogle Scholar
25Zou, H.H., Zeng, X.Q., Zhai, C.Q., Ding, W.J.: The effects of yttrium element on microstructure and mechanical properties of Mg-5 wt% Zn-2 wt% Al alloy. Mater. Sci. Eng. 402, 142 2005CrossRefGoogle Scholar
26Cao, P., Qian, M., StJohn, David H.: Native grain refinement of magnesium alloys. Scr. Mater. 53, 841 2005CrossRefGoogle Scholar
27Bramfitt, B.L.: Planar lattice disregistry theory and its application on heterogistry nuclei of metal. Metall. Trans. 6, 1258 1971Google Scholar
28Wang, Y., Liu, G., Fan, Z.: A new heat treatment procedure for rheo-diecast AZ91D magnesium alloy. Scr. Mater. 54, 903 2006CrossRefGoogle Scholar
29Armstrong, R., Codd, I., Douthwaite, R.M., Petch, N.J.: The plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 45 1962CrossRefGoogle Scholar
30Wang, Y., Liu, G., Fan, Z.: Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment. Acta Mater. 54, 689 2006CrossRefGoogle Scholar
31Wang, Y.N., Huang, J.C.: The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy. Acta Mater. 55, 897 2007CrossRefGoogle Scholar
32Lee, C.D., Shin, K.S.: Effect of microporosity on the tensile properties of AZ91 magnesium alloy. Acta Mater. 55, 4293 2007CrossRefGoogle Scholar
33Lee, C.D.: Tensile properties of high-pressure die-cast AM60 and AZ91 magnesium alloys on microporosity variation. J. Sci. Mater. 42, 10032 2007CrossRefGoogle Scholar
34Mendis, C.L.: Precipitation hardening of magnesium-zinc-aluminium casting alloys. M. Eng. Sci. Thesis Monash University Australia 2000Google Scholar
35Wang, S.J., Wu, G.Q., Li, R.H., Luo, G.X., Huang, Z.: Microstructures and mechanical properties of 5 wt% Al2Yp/Mg–Li composite. Mater. Lett. 60, 1863 2006CrossRefGoogle Scholar
36Johnson, W., Mellor, P.B.: Engineering Plasticity Van Nostrand Reinhold Company Press London 1975 110Google Scholar
37Meyers, M.A., Vöheringer, O., Lubarda, V.A.: The onset of twinning in metals: A constitutive description. Acta Mater. 49, 4025 2001CrossRefGoogle Scholar
38Barnett, M.R., Keshavarz, Z., Beer, A.G., Atwell, D.: Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52, 5093 2004CrossRefGoogle Scholar
39Christian, J.W., Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39, 1 1995CrossRefGoogle Scholar