Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-02T23:03:35.615Z Has data issue: false hasContentIssue false

Effects of strain hardenability and strain-rate sensitivity on the plastic flow and deformation homogeneity during equal channel angular pressing

Published online by Cambridge University Press:  26 November 2012

Hyoung Seop Kim
Affiliation:
Department of Metallurgical Engineering, Chungnam National University, Taejon 305–764, Korea
Sun Ig Hong
Affiliation:
Department of Metallurgical Engineering, Chungnam National University, Taejon 305–764, Korea
Min Hong Seo
Affiliation:
Department of Metallurgical Engineering, Chungnam National University, Taejon 305–764, Korea
Get access

Abstract

The effects of strain hardenability and strain rate sensitivity on the plastic flow and deformation inhomogeneity during equal channel angular pressing were studied using a finite element method analysis. In this study, perfect plastic nonhardening and rate-insensitive materials, and rate-sensitive materials were considered. In case of the nonhardening and rate-insensitive materials, the deformed geometry was predicted to be quite uniform and homogeneous. Deformation inhomogeneity developed, however, in materials with finite work-hardening exponent and strain-rate sensitivity. The corner gap formed in strain-hardening materials whereas the upper and lower channel gaps formed in strain-rate-sensitive materials. The deformation inhomogeneity was strongly dependent on the relative effects of strain-hardening exponent and strain-rate sensitivity. The predictions on the deformation inhomogeneity and the formation of corner and channel gaps were compatible with the experimental data published in the literature.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hall, E.O., Proc. Phys. Soc. B 64, 747 (1951).Google Scholar
2.Petch, N.J., J. Iron. Steel Inst. 174, 25 (1953).Google Scholar
3.Nes, E., Prog. Mater. Sci. 41, 129 (1998).Google Scholar
4.Servilano, J.G., Houtte, P.V., and Aernoudt, A., Prog. Mater. Sci. 25, 69 (1980).Google Scholar
5.Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V., Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
6.Segal, V.M., Reznikov, V.I., Drobyshevkiy, A.E., and Kopylov, V.I., Russ. Metall. (English translation) 1, 99 (1981).Google Scholar
7.Segal, V.M., Mater. Sci. Eng. A 271, 322 (1999).Google Scholar
8.Lee, D.N., Scripta Mater. 43, 115 (2000).Google Scholar
9.Kim, H.S., Mater. Sci. Eng. (2001, in press).Google Scholar
10.Iwahashi, Y., Wang, H., Horita, Z., Nenoto, M., and Langdon, T.G., Scripta Mater. 35, 143 (1996).Google Scholar
11.Valiev, R.Z., Ivanisenko, Y.V., Rauch, E.F., and Bsudelet, B., Acta Mater. 44, 4705 (1996).Google Scholar
12.Vinogradov, A., Nagasaki, S., Patlan, V., Kitagawa, K., and Kawazoe, M., Nanostructured Mater. 11, 925 (1999).Google Scholar
13.Lee, S.L., Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z., and Langdon, T.G., Mater. Sci. Eng. A 272, 63 (1999).Google Scholar
14.Kolobov, Y.R., Grabovetskaya, G.P., Ratochka, I.V., and Ivanov, K.V., Nanostructured Mater. 12, 1127 (1999).CrossRefGoogle Scholar
15.Akhmadeev, N.A., Kobelev, N.P., Mulyukov, R.R., Soifer, Y.M., and Valiev, R.Z., Acta Metall. Mater. 41, 1041 (1993).Google Scholar
16.Mulyukov, R., Weller, M., Valiev, R.Z., Gessmann, T., and Schaefer, H.E., Nanostructured Mater. 6, 577 (1995).CrossRefGoogle Scholar
17.Vinogradov, A., Mimaki, T., Hashimoto, S., and Valiev, R.Z., Scripta Mater. 41, 319 (1999).Google Scholar
18.Bowen, J.R., Gholinia, A., Roberts, S.M., and Prangnell, P.B., Mater. Sci. Eng. A 287, 87 (2000).CrossRefGoogle Scholar
19.Nakashima, K., Horita, Z., Nemoto, M., and Langdon, T.G., Acta Mater. 46, 1589 (1998).Google Scholar
20.Kim, H.S., Seo, M-H., and Hong, S.I., Mater. Sci. Eng. A 291, 86 (2000).Google Scholar
21.Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., and Langdon, T.G., Metall. Mater. Trans. 30A, 1989 (1999).Google Scholar
22.Gholinia, A., Prangell, P.B., and Markushev, M.V., Acta Mater. 48, 1115 (2000).CrossRefGoogle Scholar
23.Yamashita, A., Yamaguchi, D., Horita, Z., and Langdon, T.G., Mater. Sci. Eng. A 287, 100 (2000).Google Scholar
24.Stolyarov, V.V., Zhu, Y.T., Lowe, T.C., Islamgaliev, R.K., and Valiev, R.Z., Nanostructured Mater. 11, 947 (1999).Google Scholar
25.DeLo, D.P. and Semiatin, S.L., Metall. Mater. Trans. 30A, 2473 (1999).Google Scholar
26.Hong, S.I., Mater. Sci. Eng. 79, 1 (1986).CrossRefGoogle Scholar
27.Hong, S.I., Mater Sci. Eng. 82, 175 (1986).Google Scholar
28.Hong, S.I., Mater Sci. Eng. 91, 137 (1987).Google Scholar
29. DEFORM2D ver. 5.1, Scientific Forming Technologies Corporation, Columbus, OH (1997).Google Scholar
30.Yamaguchi, D., Hoita, Z., Nemoto, M., and Langdon, T.G., Scripta Mater. 41, 791 (1999).Google Scholar
31.Kim, H.S. (unpublished).Google Scholar
32.Hong, S.I., Gray, G.T. III, and Lewandowski, J.J., Acta Metall. Mater. 41, 2337 (1993).CrossRefGoogle Scholar
33.Shan, A., Moon, I.G., Ko, H.S., and Park, J.W., Scripta Mater. 41, 353 (1999).CrossRefGoogle Scholar
34.Semiatin, S.L., Segal, V.M., Goforth, R.E., Frey, N.D., and DeLo, D.P., Metall. Mater. Trans. 30A, 1425 (1999).Google Scholar
35.Wu, Y. and Baker, I., Scripta Mater. 37, 437 (1997).Google Scholar
36.Shan, A., Moon, I-G., Jo, H-S., and Park, J-W., Scripta Mater. 41, 353 (1999).Google Scholar
37.Ko, H.S., Chang, J.Y., Choi, S.G., and Moon, I.G., J. Kor. Inst. Met. Mater. 37, 441 (1999).Google Scholar
38.DeLo, D.P. and Semiatin, S.L., Metall. Mater. Trans. 30A, 1391 (1999).Google Scholar
39.Semiatin, S.L. and DeLo, D.P., Materials and Design, 21, 311 (2000).Google Scholar