Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T19:12:25.881Z Has data issue: false hasContentIssue false

Effects of Sub-ångstrom (pico-scale) Structure of Surfaces on Adhesion, Friction, and Bulk Mechanical Properties

Published online by Cambridge University Press:  01 August 2005

Jacob Israelachvili*
Affiliation:
Materials Department and Department of Chemical Engineering, University of California, Santa Barbara, California 93106
Nobuo Maeda
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, California 93106
Kenneth J. Rosenberg
Affiliation:
Department of Physics, University of California, Santa Barbara, California 93106
Mustafa Akbulut
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, California 93106
*
a) Address all correspondence to this author. e-mail: jacob@engineering.ucsb.edu This article is based on the MRS Medal Award presentation given by Jacob N. Israelachvili on December 1, 2004, at the Materials Research Society’s Fall Meeting in Boston. An edited transcript of the award presentation was published in the MRS Bulletin in July 2005. This JMR article has expanded technical content and has additional coauthors.
Get access

Abstract

We review experimental results—over the past 10–15 years and more recent theoretical modeling and computer simulations—on the effects of surface subnanoscale texture on adhesion and friction and the implications for certain mechanical properties of materials such as Mode I and Mode II failure. Examples and comparisons include surfaces that are adhesive or nonadhesive, rough or smooth, hard or soft (e.g., viscoelastic polymers), dry (unlubricated) or lubricated. One important conclusion is that the ultrafine picoscale details of a surface lattice or its roughness (“texture”) can be the most important factor in determining its friction and Mode II fracture, whereas such effects are less important for determining adhesion forces and Mode I fracture processes. Such studies are also clarifying the molecular and atomic basis of many well-established adhesion and tribological laws and empirical observations and are revealing new fundamental insights and relationships between nanoscale (molecular) and macroscale processes.

Type
Reviews
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Luan, B. and Robbins, M.O.: Nature 435, 929 (2005).CrossRefGoogle Scholar
2Ruths, M., Berman, A. and Israelachvili, J.: Surface forces and nanorheology of molecularly thin films, in Handbook of Nanotechnology, edited by Bhushan, B. (Springer-Verlag, Berlin, Germany, 2003), p. 543.Google Scholar
3Gao, J.P., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N. and Landman, U.: Frictional forces and Amontons’ law: From the molecular to the macroscopic scale. J. Phys. Chem. B 108, 3410 (2004).CrossRefGoogle Scholar
4Landman, U., Luedtke, W.D. and Gao, J.P.: Atomic-scale issues in tribology: Interfacial junctions and nano-elastohydrodynamics. Langmuir 12, 4514 (1996).CrossRefGoogle Scholar
5Bhushan, B., Israelachvili, J.N. and Landman, U.: Nanotribology—Friction, wear and lubrication at the atomic-scale. Nature 374, 607 (1995).CrossRefGoogle Scholar
6Persson, B.N.J. and Tosatti, E.: The effect of surface roughness on the adhesion of elastic solids. J. Chem. Phys. 115, 5597 (2001).CrossRefGoogle Scholar
7Kendall, K.: Molecular Adhesion and Its Applications: The Sticky Universe (Kluwer Academic/Plenum Publishers, New York, 2001).Google Scholar
8Persson, B.N.J.: Nanoadhesion. Wear 254, 832 (2003).CrossRefGoogle Scholar
9Greenwood, J.A. and Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. London, Ser. A 295, 300 (1966).Google Scholar
10Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).CrossRefGoogle Scholar
11Maugis, D. and Pollock, H.M.: Surface forces, deformation and adherence at metal microcontacts. Acta Metall. Mater. 32, 1323 (1984).CrossRefGoogle Scholar
12Budakian, R. and Putterman, S.J.: Time scales for cold welding and the origins of stick-slip friction. Phys. Rev. 65, 5 (2002).CrossRefGoogle Scholar
13Quon, R.A., Knarr, R.F. and Vanderlick, T.K.: Measurement of the deformation and adhesion of rough solids in contact. J. Phys. Chem. B 103, 5320 (1999).CrossRefGoogle Scholar
14Holysz, L.: The effect of thermal treatment of silica gel on its surface free energy components. Colloid. Surf. A, Physicochemical Eng. Aspects. 134, 321 (1998).CrossRefGoogle Scholar
15Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd ed. (Academic Press, London, U.K., 1991).Google Scholar
16Quon, R.A., Ulman, A. and Vanderlick, T.K.: Impact of humidity on adhesion between rough surfaces. Langmuir 16, 8912 (2000).CrossRefGoogle Scholar
17He, G., Muser, M.H. and Robbins, M.O.: Adsorbed layers and the origin of static friction. Science 284, 1650 (1999).CrossRefGoogle ScholarPubMed
18Urbakh, M., Klafter, J., Gourdon, D. and Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525 (2004).CrossRefGoogle ScholarPubMed
19Thompson, P.A. and Robbins, M.O.: Origin of stick-slip motion in boundary lubrication. Science 250, 792 (1990).CrossRefGoogle ScholarPubMed
20Thomas, T.R.: Rough Surfaces, 2nd ed. (Imperial College Press, London, U.K., 1999).Google Scholar
21Bowden, F.P. and Tabor, D.: The Friction and Lubrication of Solids (Clarendon Press, Oxford, U.K., 1986).Google Scholar
22Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I. and Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17, R1 (2005).CrossRefGoogle ScholarPubMed
23Carpick, R.W., Agrait, N., Ogletree, D.F. and Salmeron, M.: Variation of the interfacial-shear strength and adhesion of a nanometer-sized contact. Langmuir 12, 3334 (1996).CrossRefGoogle Scholar
24Fuller, K.N.G. and Tabor, D.: Effect of surface-roughness on adhesion of elastic solids. Proc. R. Soc. London, Ser. A 345, 327 (1975).Google Scholar
25Chang, W.R., Etsion, I. and Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. J. Tribol. T ASME. 109, 257 (1987).CrossRefGoogle Scholar
26Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87(11), 116101 (2001).CrossRefGoogle ScholarPubMed
27Muser, M.H., Wenning, L. and Robbins, M.O.: Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86, 1295 (2001).CrossRefGoogle ScholarPubMed
28Hyun, S., Pei, L., Molinari, J.F. and Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117 (2004).CrossRefGoogle ScholarPubMed
29Luan, B., Hyun, S., Robbins, M.O., and Bernstein, N.: Multiscale modeling of two dimensional rough surface contacts, in Fundamentals of Nanoindentation and Nanotribology III, edited by Wahl, K.J., Huber, N., Mann, A.B., Bahr, D.F., and Cheng, Y-T. (Mater. Res. Soc. Symp. Proc. 841, Warrendale, PA, 2005), R7.4, p. 231.Google Scholar
30Kogut, L. and Etsion, I.: A finite element based elastic-plastic model for the contact of rough surfaces. Tribol. Trans. 46, 383 (2003).CrossRefGoogle Scholar
31Benz, M., Rosenberg, K.J., and Israelachvili, J.N. (unpublished).Google Scholar
32Yokoyama, H., Mates, T.E. and Kramer, E.J.: Structure of asymmetric diblock copolymers in thin films. Macromolecules 33, 1888 (2000).CrossRefGoogle Scholar
33Benz, M., Euler, W.B. and Gregory, O.J.: The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride). Macromolecules 35, 2682 (2002).CrossRefGoogle Scholar
34Gent, A.N. and Lai, S.M.: Adhesion and autohesion of rubber compounds—Effect of surface roughness. Rubber Chem. Technol. 68, 13 (1995).CrossRefGoogle Scholar
35Kim, H.C. and Russell, T.P.: Contact of elastic solids with rough surfaces. J Polym. Sci. Pol. Phys. 39, 1848 (2001).CrossRefGoogle Scholar
36Landman, U. Private communication.Google Scholar
37Pei, L., Hyun, S., Molinari, J.F., Robbins, M.O.: Finite element modeling of elasto-plastic contact between rough surfaces. Journal of Mechanics and Physics of Solids (submitted).Google Scholar
38Bhushan, B. and Nosonovsky, M.: Scale effects in dry and wet friction, wear, and interface temperature. Nanotechnology 15, 749 (2004).CrossRefGoogle Scholar
39Bhushan, B. and Nosonovsky, M.: Comprehensive model for scale effects in friction due to adhesion and two- and three-body deformation (plowing). Acta Mater. 52, 2461 (2004).CrossRefGoogle Scholar
40Palasantzas, G.: Influence of self-affine surface roughness on the friction coefficient for rubbers. J. Appl. Phys. 94, 5652 (2003).CrossRefGoogle Scholar
41Biswas, S.K. and Vijayan, K.: Friction and wear of PtFe: A review. Wear 158, 193 (1992).CrossRefGoogle Scholar
42Spalding, M.A., Kirkpatrick, D.E. and Hyun, K.S.: Coefficients of dynamic friction for low-density polyethylene. Polym. Eng. Sci. 33, 423 (1993).CrossRefGoogle Scholar
43Heuberger, M., Luengo, G. and Israelachvili, J.N.: Tribology of shearing polymer surfaces. 1. Mica sliding on polymer (PnBMA). J. Phys. Chem. B 103, 10127 (1999).CrossRefGoogle Scholar
44Luengo, G., Heuberger, M. and Israelachvili, J.: Tribology of shearing polymer surfaces. 2. Polymer (PnBMA) sliding on mica. J. Phys. Chem. B 104, 7944 (2000).CrossRefGoogle Scholar
45Ruths, M. and Granick, S.: Rate-dependent adhesion between opposed perfluoropoly(alkyl ether) layers: Dependence on chain-end functionality and chain length. J. Phys. Chem. B 102, 6056 (1998).CrossRefGoogle Scholar
46Yamada, S. and Israelachvili, J.: Friction and adhesion hysteresis of fluorocarbon surfactant monolayer-coated surfaces measured with the surface forces apparatus. J. Phys. Chem. B 102, 234 (1998).CrossRefGoogle Scholar
47Maeda, N., Chen, N.H., Tirrell, M. and Israelachvili, J.N.: Adhesion and friction mechanisms of polymer-on-polymer surfaces. Science 297, 379 (2002).CrossRefGoogle ScholarPubMed
48Berman, A., Steinberg, S., Campbell, S., Ulman, A. and Israelachvili, J.: Controlled microtribology of a metal oxide surface. Tribol Lett. 4, 43 (1998).CrossRefGoogle Scholar
49Israelachvili, J., Giasson, S., Kuhl, T., Drummond, C., Berman, A., Luengo, G., Pan, J-M., Heuberger, M., Ducker, W., and Alcantar, N.: Thinning films and tribological interfaces, in Proceedings of the 26th Leeds-Lyon Symposium, Tribology Series 38, (Elsevier, 2000), p. 3.CrossRefGoogle Scholar
50Cumings, J. and Zettl, A.: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 289, 602 (2000).CrossRefGoogle ScholarPubMed
51Falvo, M.R., Taylor, R.M., Helser, A., Chi, V., Brooks, F.P., Washburn, S. and Superfine, R.: Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397, 236 (1999).CrossRefGoogle ScholarPubMed
52Buldum, A. and Lu, J.P.: Atomic scale sliding and rolling of carbon nanotubes. Phys. Rev. Lett. 83, 5050 (1999).CrossRefGoogle Scholar
53Liu, B., Yu, M.F. and Huang, Y.G.: Role of lattice registry in the full collapse and twist formation of carbon nanotubes. Phys. Rev. B 70, 199901 (2004).CrossRefGoogle Scholar
54Chhowalla, M. and Amaratunga, G.A.J.: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164 (2000).CrossRefGoogle ScholarPubMed
55Drummond, C., Alcantar, N., Israelachvili, J., Tenne, R. and Golan, Y.: Microtribology and friction-induced material transfer in WS2 nanoparticle additives. Adv. Funct. Mater. 11, 348 (2001).3.0.CO;2-S>CrossRefGoogle Scholar
56Golan, Y., Drummond, C., Homyonfer, M., Feldman, Y., Tenne, R. and Israelachvili, J.: Microtribology and direct force measurement of WS2 nested fullerene-like nanostructures. Adv. Mater. 11, 934 (1999).3.0.CO;2-L>CrossRefGoogle Scholar
57Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S.R. and Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791 (1997).CrossRefGoogle Scholar
58Greenberg, R., Halperin, G., Etsion, I. and Tenne, R.: The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol Lett. 17, 179 (2004).CrossRefGoogle Scholar
59Schwarz, U.S., Komura, S. and Safran, S.A.: Deformation and tribology of multi-walled hollow nanoparticles. Europhys. Lett. 50, 762 (2000).CrossRefGoogle Scholar
60Goldstein, A.N., Echer, C.M. and Alivisatos, A.P.: Melting in semiconductor nanocrystals. Science 256, 1425 (1992).CrossRefGoogle ScholarPubMed
61Tolbert, S.H. and Alivisatos, A.P.: High-pressure structural transformations in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 46, 595 (1995).CrossRefGoogle ScholarPubMed
62Gilbert, B., Huang, F., Zhang, H.Z., Waychunas, G.A. and Banfield, J.F.: Nanoparticles: Strained and stiff. Science 305, 651 (2004).CrossRefGoogle ScholarPubMed
63Alig, A.R.G., Akbulut, M. and Israelachvili, J.N. (in preparation).Google Scholar
64Gourdon, D., Yasa, M., Alig, A.R.G., Li, Y.L., Safinya, C.R. and Israelachvili, J.N.: Mechanical and structural properties of BaCrO4 nanorod films under confinement and shear. Adv. Funct. Mater. 14, 238 (2004).CrossRefGoogle Scholar
65Mitchell, D.J., Ninham, B.W. and Pailthorpe, B.A.: Solvent structure in particle interactions. 2. Forces at short-range. J. Chem. Soc., Faraday Transactions II 74, 1116 (1978).CrossRefGoogle Scholar
66Snook, I.K. and Vanmegen, W.: Solvation force between colloidal particles. Phys. Lett. A 74, 332 (1979).CrossRefGoogle Scholar
67Tarazona, P. and Vicente, L.: A model for density oscillations in liquids between solid walls. Mol. Phys. 56, 557 (1985).CrossRefGoogle Scholar
68Christenson, H.K. and Horn, R.G.: Direct measurement of the force between solid-surfaces in a polar liquid. Chem. Phys. Lett. 98, 45 (1983).CrossRefGoogle Scholar
69Horn, R.G. and Israelachvili, J.N.: Direct measurement of structural forces between 2 surfaces in a non-polar liquid. J. Chem. Phys. 75, 1400 (1981).CrossRefGoogle Scholar
70Kumacheva, E. and Klein, J.: Simple liquids confined to molecularly thin layers. II. Shear and frictional behavior of solidified films. J. Chem. Phys. 108, 7010 (1998).CrossRefGoogle Scholar
71Cohen, I., Mason, T.G. and Weitz, D.A.: Shear-induced configurations of confined colloidal suspensions. Phys. Rev. Lett. 93, 046001 (2004).CrossRefGoogle ScholarPubMed
72Gee, M.L., Mcguiggan, P.M., Israelachvili, J.N. and Homola, A.M.: Liquid to solid-like transitions of molecularly thin-films under shear. J. Chem. Phys. 93, 1895 (1990).CrossRefGoogle Scholar
73Drummond, C., Alcantar, N. and Israelachvili, J.: Shear alignment of confined hydrocarbon liquid films. Phys. Rev. E 66(1), 011705 (2002).CrossRefGoogle ScholarPubMed
74Akbulut, M., Chen, N., Maeda, N., Israelachvili, J.N., Grunewald, T. and Helm, C.A.: Crystallization in thin liquid films induced by shear. J. Phys. Chem. B 109, 12509 (2005).CrossRefGoogle ScholarPubMed
75Muller, C., Machtle, P. and Helm, C.A.: Enhanced absorption within a cavity—A study of thin dye layers with the surface forces apparatus. J. Phys. Chem. 98, 11119 (1994).CrossRefGoogle Scholar
76Machtle, P., Muller, C. and Helm, C.A.: A Thin absorbing layer at the center of a Fabry-Perot-interferometer. J. de Physique II 4(3), 481 (1994).CrossRefGoogle Scholar
77Grunewald, T., Dahne, L. and Helm, C.A.: Supersaturation and crystal nucleation in confined geometries. J. Phys. Chem. B 102, 4988 (1998).CrossRefGoogle Scholar
78Drummond, C. and Israelachvili, J.: Dynamic behavior of confined branched hydrocarbon lubricant fluids under shear. Macromolecules 33, 4910 (2000).CrossRefGoogle Scholar
79Drummond, C. and Israelachvili, J.: Dynamic phase transitions in confined lubricant fluids under shear. Phys. Rev. E 63, 041506 (2001).CrossRefGoogle ScholarPubMed
80Mukhopadhyay, A., Zhao, J., Bae, S.C. and Granick, S.: Contrasting friction and diffusion in molecularly thin confined films. Phys. Rev. Lett. 89, 136103 (2002).CrossRefGoogle ScholarPubMed
81Chang, K.C. and Hammer, D.A.: Adhesive dynamics simulations of sialyl-Lewis(x)/E-selectin-mediated rolling in a cell-free system. Biophys. J. 79, 1891 (2000).CrossRefGoogle Scholar
82Israelachvili, J.N. and Adams, G.E.: Measurement of forces between 2 mica surfaces in aqueous-electrolyte solutions in range 0–100 nm. J. Chem. Soc., Faraday Transactions 1 74, 975 (1978).CrossRefGoogle Scholar
83Binnig, G., Quate, C.F. and Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle ScholarPubMed
84Mangipudi, V., Tirrell, M. and Pocius, A.V.: Direct measurement of the surface-energy of corona-treated polyethylene using the surface forces apparatus. Langmuir 11, 19 (1995).CrossRefGoogle Scholar
85Tirrell, M.: Measurement of interfacial energy at solid polymer surfaces. Langmuir 12, 4548 (1996).CrossRefGoogle Scholar
86Israelachvili, J.N.: Thin-film studies using multiple-beam interferometry. J Colloid. Interf. Sci. 44, 259 (1973).CrossRefGoogle Scholar
87Homola, A.M., Israelachvili, J.N., Gee, M.L. and Mcguiggan, P.M.: Measurements of and relation between the adhesion and friction of 2 surfaces separated by molecularly thin liquid-films. J. Tribol. T. ASME 111, 675 (1989).CrossRefGoogle Scholar
88Homola, A.M., Israelachvili, J.N., Mcguiggan, P.M. and Gee, M.L.: Fundamental experimental studies in tribology—The transition from interfacial friction of undamaged molecularly smooth surfaces to normal friction with wear. Wear 136, 65 (1990).CrossRefGoogle Scholar
89Ruths, M., Alcantar, N.A. and Israelachvili, J.N.: Boundary friction of aromatic silane self-assembled monolayers measured with the surface forces apparatus and friction force microscopy. J. Phys. Chem. B 107, 11149 (2003).CrossRefGoogle Scholar
90Zhu, Y. and Granick, S.: Reassessment of solidification in fluids confined between mica sheets. Langmuir 19, 8148 (2003).CrossRefGoogle Scholar
91Yoshizawa, H., Chen, Y.L. and Israelachvili, J.: Fundamental mechanisms of interfacial friction.1. Relation between adhesion and friction. J. Phys. Chem. 97, 4128 (1993).CrossRefGoogle Scholar
92Israelachvili, J.N., Gee, M.L., McGuiggan, P., Thompson, P., and Robbins, M.: Melting-freezing transitions in molecularly thin liquid films during shear, in Dynamics in Small Confining Systems, edited by Drake, J.M., Klafter, J., and Kopelman, R. (Mater. Res. Soc. Symp. Proc. EA–22, Pittsburgh, PA, 1990), p. 3.Google Scholar