Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-30T20:07:12.308Z Has data issue: false hasContentIssue false

Elastic Green's function for a damaged interface in anisotropic materials

Published online by Cambridge University Press:  31 January 2011

J. R. Berger
Affiliation:
Division of Engineering, Colorado School of Mines, Golden, Colorado 80401
V. K. Tewary
Affiliation:
Materials Reliability Division, National Institute of Standards and Technology, Boulder, Colorado 80303
Get access

Abstract

We present the derivation of the elastic Green's function for an anisotropic bimaterial in a state of plane strain. A Fourier transform method is used to calculate the Green's function. A discontinuity in displacement is permitted across the interface between the two solids. This provides a useful functional form for parameterizing damage along an interface. We show several examples for the form of the displacement discontinuity and calculate the displacement Green's function for each. The Green's function derived here is applicable to a variety of interface problems between two different anisotropic solids or for two similar solids at different orientations.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ochiai, S., and Osamura, K., Metall. Trans. A 18A (4), 673679 (1987).CrossRefGoogle Scholar
2.Ochiai, S. and Osamura, K., Metall. Trans. A 21A (4), 971977 (1990).Google Scholar
3.Hseuh, C-H., Mater. Sci. Eng. A165, 189195 (1993).Google Scholar
4.Moazed, K. L., Trans. A 23A, 19992006 (1992).Google Scholar
5.Reeves, A. J., Dunlop, H., and Clyne, T. W., Metall. Sci. Eng. A165, 189195 (1993).Google Scholar
6.Liaw, P. K., Ijiri, Y., Taszarek, B. J., Frohlich, S., Gungor, M. N., and Logsdon, W. A., Metall. Trans. A 21A, 529538 (1990).Google Scholar
7.Shield, T. W. and Kim, K-S., Int. J. Solids Struct. 29 (9), 10851103 (1992).CrossRefGoogle Scholar
8.Choi, H. C. and Kim, K-S., Mech, J.. Phys. Solids 40 (1), 75103 (1992).Google Scholar
9.Suo, Z. and Hutchinson, J. W., Int. J. Solids Struct. 25 (1), 13371353 (1989).Google Scholar
10.Hu, M. S., Thouless, M. D., and Evans, A. G., Acta Metall. 36 (5), 13011307 (1988).Google Scholar
11.Hu, M. S. and Evans, A. G., Acta Metall. 37 (3), 917925 (1989).CrossRefGoogle Scholar
12.Adhesion Measurement of Thin Films, Thick Films, and Bulk Coatings, edited by K. L. Mittal, ASTM STP 640 (American Society for Testing and Materials, 1978).Google Scholar
13.Harding, W. B. and Di Bari, G. A., Testing of Metallic and Inorganic Coatings, ASTM STP 947 (American Society for Testing and Materials, 1987).Google Scholar
14.Achenbach, J. D. and Zhu, H., J. Mech. Phys. Solids 37 (3), 381393 (1989).Google Scholar
15.Tewary, V. K., Wagoner, R. H., and Hirth, J. P., J. Mater. Res. 4, 113123 (1989).Google Scholar
16.Tewary, V. K., Wagoner, R. H., and Hirth, J. P., J. Mater. Res. 4, 124136 (1989).Google Scholar
17.Tucker, M. O., Philos. Mag. 19, 8th Series, 11411159 (1969).Google Scholar
18.Tewary, V. K., J. Mater. Res. 6, 25922608 (1991).CrossRefGoogle Scholar
19.Berger, J. R., Eng. Anal. Bound. Ele. 14, 123131 (1994).Google Scholar
20.Stroh, A. N., J. Math. Phys. 41, 77103 (1962).CrossRefGoogle Scholar
21.Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (Krieger Publishing Co., Malabar, FL, 1982).Google Scholar