Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T02:45:47.540Z Has data issue: false hasContentIssue false

Elastic properties of tetragonal PbTiO3 single crystals by Brillouin scattering

Published online by Cambridge University Press:  31 January 2011

A. G. Kalinichev
Affiliation:
Department of Geology and Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
J. D. Bass
Affiliation:
Department of Geology and Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
B. N. Sun
Affiliation:
Department of Materials Science and Engineering and Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
D. A. Payne
Affiliation:
Department of Materials Science and Engineering and Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Get access

Abstract

Brillouin light scattering was used to obtain the elastic and piezoelectric constants for tetragonal PbTiO3 single crystals at room temperature. Approximately 170 measurements of longitudinal and transverse acoustic wave velocities were inverted using literature dielectric constant values to obtain the full set of elastic and piezoelectric constants. Our data indicate a greater electromechanical anisotropy in the polar c direction than previously reported, but are otherwise in general agreement with previous studies. We discuss briefly the degree to which individual elastic and piezoelectric constants are resolved.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jona, F. and Shirane, G., Ferroelectric Crystals (Pergamon Press, New York, 1962).Google Scholar
2.Lines, M. L. and Glass, A. M., Principles and Applications of Ferroelectric and Related Materials (Oxford University Press, Oxford, U.K., 1977).Google Scholar
3.Ferroelectric and Related Materials, edited by Smolenskii, G. A. (Gordon and Breach, New York, 1984).Google Scholar
4.Zha, C. S., Kalinichev, A. G., Bass, J. D., Suchicital, C. T. A., and Payne, D. A., J. Appl. Phys. 72, 3705 (1992).CrossRefGoogle Scholar
5.Nagatsuma, K., Ito, Y., Jyomura, S., Takeuchi, H., and Ashida, S., Ferroelectrics 41, 169 (1982).CrossRefGoogle Scholar
6.Fontana, M. D., Idrissi, H., and Wojcik, K., Europhys. Lett. 11, 419 (1990).CrossRefGoogle Scholar
7.Fontana, M. D., Idrissi, H., Kugel, G. E., and Wojcik, K., J. Phys.: Condens. Matter 3, 8695 (1991).Google Scholar
8.Gavrilyachenko, V. G. and Fesenko, E. G., Sov. Phys. Crystallogr. 16, 549 (1971).Google Scholar
9.Turik, A. V., Fesenko, E. G., Gavrilyachenko, V. G., and Khasabova, G. I., Sov. Phys. Crystallogr. 19, 677 (1975).Google Scholar
10.Turik, A. V., Shevchenko, N. B., Gavrilyachenko, V. G., and Fesenko, E. G., Phys. Status Solidi B 94, 525 (1979).CrossRefGoogle Scholar
11.Li, Z., Grimsditch, M. H., Xu, X., and Chan, S-K., Ferroelectrics 141, 313 (1993).CrossRefGoogle Scholar
12.Sun, B. N., Huang, Y., and Payne, D. A., J. Cryst. Growth 128, 867 (1993).CrossRefGoogle Scholar
13.Glazer, A. M. and Mabud, S. A., Acta Crystallogr. B 34, 1065 (1978).CrossRefGoogle Scholar
14.Fesenko, E. G., Semenchev, A. F., and Gavrilyachenko, V. G., Ferroelectrics 13, 471 (1976).CrossRefGoogle Scholar
15.Kupriyanov, M. F., Zaitsev, S. M., Gagarina, E. F., and Fesenko, E. G., Phase Transitions 4, 55 (1983).CrossRefGoogle Scholar
16.Sandercock, J. R., in Topics in Applied Physics, Light Scattering in Solids III, edited by Cardona, M. and Gunterhodt, G. (Springer-Verlag, New York, 1982), Vol. 15, pp. 173206.Google Scholar
17.Bass, J. D., J. Geophys. Res. 84, 7621 (1989).CrossRefGoogle Scholar
18.Kalinichev, A. G., Bass, J. D., Zha, C. S., Han, P. D., and Payne, D. A., J. Appl. Phys. 74, 6603 (1993).CrossRefGoogle Scholar
19.Vaughan, M. T., Ph.D. Thesis, State University of New York at Stony Brook, NY (1979).Google Scholar
20.Vaughan, M. T. and Bass, J. D., Physics and Chemistry of Minerals 10, 62 (1983).CrossRefGoogle Scholar
21.Singh, S., Remeika, J. P., and Popowicz, J. R., Appl. Phys. Lett. 20, 135 (1972).CrossRefGoogle Scholar
22.Dieulesaint, E. and Royer, D., Elastic Waves in Solids: Application to Signal Processing (John Wiley & Sons, Chichester, 1980).Google Scholar
23.Nye, J. F., Physical Properties of Crystals (Oxford University Press, Oxford, U.K., 1960).Google Scholar
24.Burns, G. and Scott, B. A., Phys. Rev. B 7, 3088 (1973).CrossRefGoogle Scholar
25.Frey, R. A. and Silberman, E., Helvetica Physica Acta 49, 1 (1976).Google Scholar
26.Freire, J. D. and Katiyar, R. S., Phys. Rev. B 37, 2074 (1988).CrossRefGoogle Scholar
27.Haun, M. J., Furman, E., Jang, S. J., McKinstry, H. A., and Cross, L. E., J. Appl. Phys. 62, 3331 (1987).CrossRefGoogle Scholar
28.Li, Z., Chan, S-K., Grimsditch, M. H., and Zouboulis, E. S., J. Appl. Phys. 70, 7327 (1991).CrossRefGoogle Scholar