Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Montes, J.M.
Cuevas, F.G.
and
Cintas, J.
2007.
Electrical Resistivity of Metal Powder Aggregates.
Metallurgical and Materials Transactions B,
Vol. 38,
Issue. 6,
p.
957.
Montes, J. M.
Cuevas, F. G.
and
Cintas, J.
2011.
Electrical resistivity of a titanium powder mass.
Granular Matter,
Vol. 13,
Issue. 4,
p.
439.
Montes, J. M.
Cuevas, F. G.
Cintas, J.
and
Urban, P.
2011.
Electrical conductivity of metal powders under pressure.
Applied Physics A,
Vol. 105,
Issue. 4,
p.
935.
Iyengar, Ananth S.
Liang, Dong
Gao, Xuan P.A.
and
Abramson, Alexis R.
2012.
Densification effects on the electrical behavior of uniaxially compacted bismuth nanowires.
Acta Materialia,
Vol. 60,
Issue. 5,
p.
2369.
Ye, Yongquan
Li, Xiaoqiang
Hu, Ke
Lai, Yangen
and
Li, Yuanyuan
2013.
The influence of premolding load on the electrical behavior in the initial stage of electric current activated sintering of carbonyl iron powders.
Journal of Applied Physics,
Vol. 113,
Issue. 21,
Barroso-Bogeat, A.
Alexandre-Franco, M.
Fernández-González, C.
Macías-García, A.
and
Gómez-Serrano, V.
2014.
Electrical conductivity of activated carbon–metal oxide nanocomposites under compression: a comparison study.
Phys. Chem. Chem. Phys.,
Vol. 16,
Issue. 45,
p.
25161.
Ye, Yongquan
Li, Xiaoqiang
Zheng, Donghai
Qu, ShengGuan
and
Li, Yuanyuan
2015.
Examination of Electrical Conduction of Carbonyl Iron Powder Compacts.
MATERIALS TRANSACTIONS,
Vol. 56,
Issue. 5,
p.
696.
Barroso-Bogeat, A.
Alexandre-Franco, M.
Fernández-González, C.
Sánchez-González, J.
and
Gómez-Serrano, V.
2015.
Electrical conductivity of metal (hydr)oxide–activated carbon composites under compression. A comparison study.
Materials Chemistry and Physics,
Vol. 152,
Issue. ,
p.
113.
Montes, J. M.
Cuevas, F. G.
Cintas, J.
and
Gallardo, J. M.
2016.
Electrical conductivity of metal powder aggregates and sintered compacts.
Journal of Materials Science,
Vol. 51,
Issue. 2,
p.
822.
Montes, Juan
Cuevas, Francisco
Ternero, Fátima
Astacio, Raquel
Caballero, Eduardo
and
Cintas, Jesús
2017.
A Method to Determine the Electrical Resistance of a Metallic Powder Mass under Compression.
Metals,
Vol. 7,
Issue. 11,
p.
479.
Darvizeh, A.
Alitavoli, M.
and
Namazi, N.
2018.
An investigation into the parameters affecting the breakdown voltage and inter-particle bonding in the electrical discharge compaction of metal powders.
Advanced Powder Technology,
Vol. 29,
Issue. 10,
p.
2346.
Chaim, Rachman
2018.
Numerical model for particle size effects on flash sintering temperature of ionic nanoparticles.
Journal of Materials Science,
Vol. 53,
Issue. 19,
p.
13853.
Montes, Juan
Cuevas, Francisco
Ternero, Fátima
Astacio, Raquel
Caballero, Eduardo
and
Cintas, Jesús
2018.
Medium-Frequency Electrical Resistance Sintering of Oxidized C.P. Iron Powder.
Metals,
Vol. 8,
Issue. 6,
p.
426.
Manuel Montes, Juan
Gómez Cuevas, Francisco
Cintas, Jesús
Ternero, Fátima
and
Sánchez Caballero, Eduardo
2019.
Electrical and Electronic Properties of Materials.
Montes, J. M.
Cuevas, F. G.
Reina, F. J. V.
Ternero, F.
Astacio, R.
Caballero, E. S.
and
Cintas, J.
2020.
Modelling and Simulation of the Electrical Resistance Sintering Process of Iron Powders.
Metals and Materials International,
Vol. 26,
Issue. 7,
p.
1045.
Ternero, Fátima
Caballero, Eduardo S.
Astacio, Raquel
Cintas, Jesús
and
Montes, Juan M.
2020.
Nickel Porous Compacts Obtained by Medium-Frequency Electrical Resistance Sintering.
Materials,
Vol. 13,
Issue. 9,
p.
2131.
Aranda, Rosa María
Ternero, Fátima
Lozano-Pérez, Sergio
Montes, Juan Manuel
and
Cuevas, Francisco G.
2021.
Capacitor Electrical Discharge Consolidation of Metallic Powders—A Review.
Metals,
Vol. 11,
Issue. 4,
p.
616.
Cooper, Marcia A.
Erikson, William W.
and
Oliver, Michael S.
2021.
Electrical conductivity of porous binary powder mixtures.
Mechanics of Materials,
Vol. 162,
Issue. ,
p.
104026.
Böhm, David
Kusztrich, Matija
Kurinjimala, Robin
Eder, Andreas
and
Eisenmenger-Sittner, Christoph
2023.
Analysis of electrical resistance measurements as a potential determination method for coating thickness on powders.
Surface and Coatings Technology,
Vol. 473,
Issue. ,
p.
129931.