Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T15:05:54.921Z Has data issue: false hasContentIssue false

Electrically conductive CuS–poly(acrylic acid) composite coatings

Published online by Cambridge University Press:  31 January 2011

H. Hu
Affiliation:
Photovoltaic Systems Group, Laboratorio de Energía Solar, IIM, Universidad Nacional Autonoma de Mexico, Temixco 62580, Morelos, México
J. Campos
Affiliation:
Photovoltaic Systems Group, Laboratorio de Energía Solar, IIM, Universidad Nacional Autonoma de Mexico, Temixco 62580, Morelos, México
P. K. Nair
Affiliation:
Photovoltaic Systems Group, Laboratorio de Energía Solar, IIM, Universidad Nacional Autonoma de Mexico, Temixco 62580, Morelos, México
Get access

Abstract

Copper sulfide (CuS) powder precipitated from a chemical bath containing Cu(II) chloride and thiourea and annealed in air at 150 °C for 1 h was dispersed in a poly(acrylic acid) aqueous solution (with additional water or propylene glycol as a dispersive agent) and cast on glass slides. Upon evaporation of the solvent, coatings of ∼50 μm in thickness of a CuS-poly(acrylic acid) composite are formed. Measurement of sheet resistance (R) indicates a percolation threshold of electrical conduction at a weight fraction [wf is wt. % of CuS to poly(acrylic acid) + CuS] of about 40%; the composite undergoes a transition from insulator (R ∼ 1013 Ω) to conductive state (R ∼ 102 Ω). The morphology and thermal stability of the composite depend on the choice of the dispersive agent for the CuS powder; smoother and thermally stable (up to a temperature of 250 °C) coatings are obtained when propylene glycol is used. The results on x-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy studies are given to indicate the structure and bonding mechanisms and their dependence on temperature and dispersive agents.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Maycock, P. D. and Stirewalt, E. N., Photovaltaics: Sunlight to Electricity in One Step (Brick House Publishing Co. Inc., 1981), p. 39.Google Scholar
2.Agnihotri, O. P. and Gupta, B. K., Solar Selective Surfaces (John Wiley & Sons, New York, 1981), p. 115.Google Scholar
3.Matsumoto, H., Nakayama, N., and Ikegami, S., Jpn. J. Appl. Phys. 14, 129 (1980).CrossRefGoogle Scholar
4.Nair, M. T. S. and Nair, P. K., Semicond. Sci. Technol. 4, 191 (1989).CrossRefGoogle Scholar
5.Nair, P. K., García, V. M., Fernández, A. M., Ruiz, H. S., and Nair, M. T. S., J. Phys. D: Appl. Phys. 24, 441 (1991).CrossRefGoogle Scholar
6.Estrada-Gasca, C. A., Alvarez-Garcia, G., and Nair, P.K., J. Phys. D: Appl. Phys. 26, 1304 (1993).CrossRefGoogle Scholar
7.Hu, H. and Nair, P. K., Surf. Coatings Technol. (1995, in press).Google Scholar
8.Sebastian, P. J., Gomez-Daza, O., Campos, J., Baños, L., and Nair, P.K., Solar Energy Mater. and Solar Cells 32, 159 (1994).CrossRefGoogle Scholar
9.Okamoto, K. and Kawai, S., Jpn. J. Appl. Phys. 12, 1130 (1973).CrossRefGoogle Scholar
10.Švorčik, V., Rybka, V., Jankovskij, O., Hnatowicz, V., and Kvítek, J., J. Mater. Res. 9, 643 (1994).CrossRefGoogle Scholar
11.Carbon Black-Polymer Composites, edited by E. K. Sichel (Marcel Dekker, Inc., New York, 1982).Google Scholar
12.Carmona, F., Physica A 157, 461 (1989).CrossRefGoogle Scholar
13.Castaño, V. M., Arita, I.H., Saniger, J., and Hu, H., in Advanced Topics in Materials Science and Engineering, edited by Morán-López, J.L. and Sanchez, J.M. (Plenum Press, New York, 1993), p. 103.CrossRefGoogle Scholar
14.Hu, H., Doctorial Thesis, Faculty of Science of National University of Mexico (1992).Google Scholar
15.Padilla, A., Vázquez, A., and Castaño, V. M., J. Mater. Res. 6, 2452 (1991).CrossRefGoogle Scholar
16.Nair, P. K., Nair, M.T.S., Pathirana, H. M. K. K., Zingaro, R.A., and Meyers, E.A., J. Electrochem. Soc. 140, 754 (1993).CrossRefGoogle Scholar
17.Koss, R. S. and Stroud, D., Phys. Rev. B 35, 9004 (1987).CrossRefGoogle Scholar
18.Bergman, D. J., Physica A 157, 72 (1989).CrossRefGoogle Scholar
19.Heeger, A. J., in Proc. 81st Nobel symposium, edited by Salaneck, W. R., Lundstrom, I., and Ranby, B. (Oxford University Press, Oxford, 1993), p. 27.Google Scholar
20.Ailward, G. H. and Findlay, T.J. V., SI Chemical Data (John Wiley, Melbourne, Australia, 1974), p. 112.Google Scholar
21.Greenberg, A. R. and Kamel, I., J. Polym. Sci.: Polym. Chem. Ed. 15, 2137 (1977).Google Scholar
22.Saniger, J. M., Hu, H., and Castaño, V. M., in Handbook on Characterization Techniques for the Solid-Solution Interface, edited by Adair, J. H., Casey, J. A., and Venigalla, S. (The American Ceramic Society, Westerville, OH, 1993), p. 169.Google Scholar
23.Delton, D. and Stupp, S. I., Macromol. 16, 1143 (1983).Google Scholar
24.Bee, T. G., Dias, A.J., Franchina, N.L., Kolb, B.U., Lee, K.W., Patton, P.A., Shoichet, M. S., and McCarthy, T.J., in Polymer Surfaces and Interfaces II, edited by Feast, W. J., Munro, H. S., and Richards, R.W. (John Wiley & Sons, Chichester, 1993), p. 37.Google Scholar