Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T09:43:01.821Z Has data issue: false hasContentIssue false

Electrically coupling complex oxides to semiconductors: A route to novel material functionalities

Published online by Cambridge University Press:  12 January 2017

J.H. Ngai*
Affiliation:
Department of Physics, University of Texas-Arlington, Arlington, TX 76019, USA
K. Ahmadi-Majlan
Affiliation:
Department of Physics, University of Texas-Arlington, Arlington, TX 76019, USA
J. Moghadam
Affiliation:
Department of Physics, University of Texas-Arlington, Arlington, TX 76019, USA
M. Chrysler
Affiliation:
Department of Physics, University of Texas-Arlington, Arlington, TX 76019, USA
D. Kumah
Affiliation:
Department of Applied Physics, Yale University, New Haven, CT 06511, USA; and Center for Research on Interface Structures and Phenomena, Yale University, New Haven, CT 06511, USA
F.J. Walker
Affiliation:
Department of Applied Physics, Yale University, New Haven, CT 06511, USA; and Center for Research on Interface Structures and Phenomena, Yale University, New Haven, CT 06511, USA
C.H. Ahn
Affiliation:
Department of Applied Physics, Yale University, New Haven, CT 06511, USA; and Center for Research on Interface Structures and Phenomena, Yale University, New Haven, CT 06511, USA
T. Droubay
Affiliation:
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Y. Du
Affiliation:
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
S.A. Chambers
Affiliation:
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
M. Bowden
Affiliation:
Enviromental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
X. Shen
Affiliation:
Brookhaven National Laboratory, Center for Functional Nanomaterials, Upton, NY 11973, USA
D. Su
Affiliation:
Brookhaven National Laboratory, Center for Functional Nanomaterials, Upton, NY 11973, USA
*
a) Address all correspondence to this author. e-mail: jngai@uta.edu
Get access

Abstract

Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling complex oxides to traditional semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Essential to electrically coupling complex oxides to semiconductors is control of the physical structure of the epitaxially grown oxide, as well as the electronic structure of the interface. Here we discuss how composition of the perovskite A- and B-site cations can be manipulated to control the physical and electronic structure of semiconductor—complex oxide heterostructures. Two prototypical heterostructures, Ba1−x Srx TiO3/Ge and SrZrx Ti1−x O3/Ge, will be discussed. In the case of Ba1−x Srx TiO3/Ge, we discuss how strain can be engineered through A-site composition to enable the re-orientable ferroelectric polarization of the former to be coupled to carriers in the semiconductor. In the case of SrZrx Ti1−x O3/Ge we discuss how B-site composition can be exploited to control the band offset at the interface. Analogous to heterojunctions between compound semiconducting materials, control of band offsets, i.e., band-gap engineering, provides a pathway to electrically couple complex oxides to semiconductors to realize a host of functionalities.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

McKee, R.A., Walker, F.J., and Chisholm, M.F.: Crystalline oxides on silicon: The first five monolayers. Phys. Rev. Lett. 81, 3014 (1998).Google Scholar
Reiner, J.W., Kolpak, A.M., Segal, Y., Garrity, K.F., Ismail-Beigi, S., Ahn, C.H., and Walker, F.J.: Crystalline oxides on semiconductors. Adv. Mater. 22, 2919 (2010).Google Scholar
Baek, S-H. and Eom, C.B.: Epitaxial integration of perovskite-based multifunctional oxides. Acta Mater. 61, 2734 (2013).Google Scholar
Imada, M., Fujimori, A., and Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).Google Scholar
Dawber, M., Rabe, K.M., and Scott, J.F.: Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083 (2005).Google Scholar
Wu, Y-R. and Singh, J.: Polar heterostructure for multifunction devices: Theoretical studies. IEEE Trans. Electron Devices 52, 284 (2005).Google Scholar
Salahuddin, S. and Datta, S.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405 (2008).CrossRefGoogle ScholarPubMed
Zutic, I., Fabian, J., and Das Sarma, S.: Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).Google Scholar
Khaselev, O. and Turner, J.A.: A monolithic photovoltaic-photoelectroechemical device for hydrogen production via water splitting. Science 280, 425 (1998).CrossRefGoogle ScholarPubMed
Hu, S., Shaner, M.R., Beardslee, J.A., Lichterman, M., Brunschwig, B.S., and Lewis, N.S.: Amorphous TiO₂ coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005 (2014).Google Scholar
Ji, L., McDaniel, M.D., Wang, S., Posadas, A.B., Li, X., Huang, H., Lee, J.C., Demkov, A.A., Bard, A.J., Ekerdt, J.G., and Yu, E.T.: A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat. Nanotechnol. 10, 84 (2015).Google Scholar
Ngai, J.H., Kumah, D.P., Ahn, C.H., and Walker, F.J.: Hysteretic electrical transport in BaTiO3/Ba1−x Sr x TiO3/Ge heterostructures. Appl. Phys. Lett. 104, 062905 (2014).Google Scholar
Moghadam, J., Ahmadi-Majlan, K., Shen, X., Droubay, T., Bowden, M., Chrysler, M., Su, D., Chambers, S.A., and Ngai, J.H.: Band-gap engineering at a semiconductor–crystalline oxide interface. Adv. Mater. Interfaces 2, 1400497 (2015).Google Scholar
Rondinelli, J.M., May, S.J., and Freeland, J.W.: Control of octahedral connectivity in perovskite oxide heterostructures: An emerging route to multifunctional materials discovery. MRS Bull. 37, 261 (2012).Google Scholar
Choi, K., Biegalski, M., Li, Y., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y., Pan, X., Gopalan, V., Chen, L-Q., Schlom, D., and Eom, C.: Enhancement of ferroelectricity in strained BaTiO3 films. Science 306, 1005 (2004).Google Scholar
Takamura, Y., Chopdekar, R.V., Arenholz, E., and Suzuki, Y.: Control of the magnetic and magnetotrasnport properties of La0.7Sr0.3MnO3 thin films through epitaxial strain. Appl. Phys. Lett. 92, 162504 (2008).Google Scholar
Prellier, W., Rajeswari, M., Venkatesan, T., and Greene, R.: Effect of substrate-induced strain on the charge-ordering transition in Nd0.5Sr0.5MnO3 thin films. Appl. Phys. Lett. 75, 1446 (1999).Google Scholar
Meyers, D., Middey, S., Kareev, M., van Veenendaal, M., Moon, E.J., Gray, B.A., Liu, J., Freeland, J.W., and Chakhalian, J.: Strain-modulated Mott transition in EuNiO3 ultrathin films. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 075116 (2013).CrossRefGoogle Scholar
Matthews, J.W.: In Coherent Interfaces and Misfit Dislocations: Epitaxial Growth Part B, Matthews, J.W., ed. (Academic Press Inc., New York, 1975); p. 559.Google Scholar
Reiner, J.W., Walker, F.J., McKee, R.A., Billman, C.A., Junquera, J., Rabe, K.M., and Ahn, C.H.: Ferroelectric stability of BaTiO3 in a crystalline oxide on semiconductor structure. Phys. Status Solidi B 241, 2287 (2004).Google Scholar
Chandra, P. and Littlewood, P.B.: In A Landau Primer for Ferroelectrics: Physics of ferroelectrics: A modern Perspective, Rabe, K., Ahn, C.H., and Triscone, J.-M., eds. (Topics in Applied Physics, Springer-Verlag, Berlin Heidelberg, 2007); p. 69.Google Scholar
Vaithyanathan, V., Lettieri, J., Tian, W., Sharan, A., Vasudevarao, A., Li, Y.L., Kochhar, A., Ma, H., Levy, J., Zschack, P., Woicik, J.C., Chen, L.Q., Gopalan, V., and Schlom, D.G.: c-Axis oriented eptiaxial BaTiO3 films on (001) Si. J. Appl. Phys. 100, 024108 (2006).Google Scholar
Ponath, P., Fredrickson, K., Posadas, A.B., Ren, Y., Wu, X., Vasudevan, R.K., Okatan, M.B., Jesse, S., Aoki, T., McCartney, M.R., Smith, D.J., Kalinin, S.V., Lai, K., and Demkov, A.A.: Carrier density modulation in a germanium heterostructure by ferroelectric switching. Nat. Commun. 6, 6067 (2014).Google Scholar
Contreras-Guerrero, R., Veazey, J.P., Levy, J., and Droopad, R.: Properties of epitaxial BaTiO3 deposited on GaAs. Appl. Phys. Lett. 102, 012907 (2013).Google Scholar
Klein, A. and Chen, F.: Polarization dependence of Schottky barrier heights at interfaces of ferroelectrics determined by photoelectron spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 86, 094105 (2012).Google Scholar
Wen, Z., Li, C., Wu, D., Li, A., and Ming, N.: Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat. Mater. 12, 617 (2013).CrossRefGoogle ScholarPubMed
Fridkin, V.M.: Ferroelectric Semiconductors (Consultants Bureau, New York, 1980).Google Scholar
Okatan, M.B., Mantese, J.V., and Alpay, S.P.: Effect of space charge on the polarization hysteresis characteristics of monolithic and compositionally graded ferroelectrics. Acta Mater. 58, 39 (2010).Google Scholar
Robertson, J.: Band offsets of wide-band-gap oxides and implications on future electronic devices. J. Vac. Sci. Technol., B 18, 1785 (2000).CrossRefGoogle Scholar
Amy, F., Wan, A., Kahn, A., Walker, F.J., and McKee, R.A.: Surface and interface chemical composition of thin epitaxial SrTiO3 and BaTiO3 . J. Appl. Phys. 96, 1601 (2004).Google Scholar
Chambers, S.A., Liang, Y., Yu, Z., Droopad, R., and Ramdani, J.: Band offset and structure of SrTiO3/Si(001) heterojunctions. J. Vac. Sci. Technol., A 19, 934 (2001).Google Scholar
Liang, Y., Kulik, J., Eschrich, T., Droopad, R., Yu, Z., and Maniar, P.: Hetero-epitaxy of perovskite oxides on GaAs(001) by molecular beam epitaxy. Appl. Phys. Lett. 85, 1217 (2004).Google Scholar
Kornblum, L., Morales-Acosta, M.D., Jin, E.N., Ahn, C.H., and Walker, F.J.: Transport at the epitaxial interface between germanium and functional oxides. Adv. Mater. Interfaces 2, 1500193 (2015).Google Scholar
Capasso, F.: Band-gap engineering: From physics and materials to new semiconductor devices. Science 235, 172 (1987).Google Scholar
Schafranek, R., Baniecki, J., Ishii, M., Kotaka, Y., Yamanka, K., and Kurihara, K.: Band offsets at the epitaxial SrTiO3/SrZrO3(001) heterojunction. J. Phys. D: Appl. Phys. 45, 055303 (2012).Google Scholar
Kajdos, A.P., Ouellette, D.G., Cain, T.A., and Stemmer, S.: Two-dimensional electron gas in a modulation-doped SrTiO3/Sr(Ti,Zr)O3 heterostructure. Appl. Phys. Lett. 103, 082120 (2013).CrossRefGoogle Scholar
Rossel, C., Mereu, B., Marchiori, C., Caimi, D., Sousa, M., Guiller, A., Siegwart, H., Germann, R., Locquet, J-P., Fompeyrine, J., Webb, D.J., Dieker, C., and Seo, J.W.: Field-effect transistors with SrHfO3 as gate oxide. Appl. Phys. Lett. 89, 053506 (2006).Google Scholar
Jeon, S., Walker, F.J., Billman, C.A., McKee, R.A., and Hwang, H.: Electrical characteristics of epitaxially grown SrTiO3 on silicon for metal-insulator-semiconductor gate dielectric applications. IEEE Electron Device Lett. 24, 218 (2003).Google Scholar
Wallace, R.M., McIntyre, P.C., Kim, J., and Nishi, Y.: High-k gate dielectrics for CMOS technology. MRS Bull. 34, 493 (2009).Google Scholar
Kraut, E.A., Grant, R.W., Waldrop, J.W., and Kowalczyk, S.P.: Precise determination of the valence-band edge in X-ray photoemission spectra: Application to measurement of semiconductor interface potentials. Phys. Rev. Lett. 44, 1620 (1980).Google Scholar
Kraut, E.A., Grant, R.W., Waldrop, J.W., and Kowalczyk, S.P.: Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by X-ray photoelectron spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 28, 1965 (1983).Google Scholar
Han, J-P. and Ma, T.P.: SrBi2Ta2O9 memory capacitor on Si with a silicon nitride buffer. App. Phys. Lett. 72, 1185 (1998).Google Scholar