Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T16:14:27.408Z Has data issue: false hasContentIssue false

Electron spectroscopy on the charge transfer complex [(7-amino-2,4 dimethyl-1,8 naphthyridine) (TCNQ)] (TCNQ = 7,7',8,8'-tetracyanoquinodimethane)

Published online by Cambridge University Press:  03 March 2011

A. Arena
Affiliation:
Istituto di Struttura della Materia, Università di Messina, Salita Sperone 31, 1-98166 Sant'Agata-Messina, Italy
S. Lo Schiavo
Affiliation:
Dipartimento di Chimica Inorganica, Analitica e Struttura Molecolare, Salita Sperone 31, 1-98166 Sant'Agata-Messina, Italy
A.M. Mezzasalma
Affiliation:
Istituto di Struttura della Materia, Università di Messina, Salita Sperone 31, 1-98166 Sant'Agata-Messina, Italy
S. Patané
Affiliation:
Istituto di Struttura della Materia, Università di Messina, Salita Sperone 31, 1-98166 Sant'Agata-Messina, Italy
P. Piraino
Affiliation:
Dipartimento di Chimica Inorganica, Analitica e Struttura Molecolare, Salita Sperone 31, 1-98166 Sant'Agata-Messina, Italy
G. Saitta
Affiliation:
Istituto di Struttura della Materia, Università di Messina, Salita Sperone 31, 1-98166 Sant'Agata-Messina, Italy
Get access

Abstract

Reflection electron energy loss spectroscopy (REELS) and optical reflectivity measurements have been used to characterize in the valence energy region the dielectric behavior of 7-amino-2,4 dimethyl-1,8 naphthyridine and of the charge transfer complex formed by this compound and the 7,7',8,8'-tetracyanoquinodimethane (TCNQ). The effects of the charge transfer interaction on the core energy levels have been investigated by comparing the line shape of the carbon and nitrogen Is core photoelectron peaks of the electron-donor and electron-acceptor molecules and of the charge transfer complex formed by them.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bozio, R. and Pecile, C., Spectroscopy of Advanced Materials, Advances in Spectroscopy, edited by Clark, R. J. H. and Hester, R. E. (John Wiley & Sons, New York, 1991), Vol. 10, pp. 174; Spectroscopy of Advanced Materials, Advances in Spectroscopy, edited by Clark, R. J. H. and Hester, R. E. (John Wiley & Sons, New York, 1993), Vol. 22.Google Scholar
2Arena, A., Lo Schiavo, S., Mezzasalma, A. M., Patané, S., Piraino, P., and Saitta, G., unpublished work.Google Scholar
3Lunelli, B. and Pecile, C., J. Chem. Phys. 52, 2375 (1970).CrossRefGoogle Scholar
4Chappel, J. S., Bloch, A. N., Bryden, W. A., Maxfleld, M., Poehler, T. O., and Cowan, D. O., J. Am. Chem. Soc. 103, 2422 (1981).CrossRefGoogle Scholar
5Girlanda, R., Martino, G., Mezzasalma, A. M., Mondio, G., Perillo, P., and Saitta, G., Nuovo Cimento D 7, 469 (1986).CrossRefGoogle Scholar
6Mondio, G., Neri, F., Curró, G., Patané, S., and Compagnini, G., J. Mater. Res. 8, 2627 (1993).CrossRefGoogle Scholar
7Daniels, J., Festenberg, C. V., Raether, H., and Zeppenfeld, K., Springer Tracts in Modern Physics, edited by Hohler, G. (Springer, New York, 1970), Vol. 45.Google Scholar
8Fink, J., Adv. Electron. Electron. Phys. 75 (1989).Google Scholar
9Ritchie, R. H., Phys. Rev. 106, 874 (1957); Ritchie, R. H., Phys. Rev. 114, 644 (1959).CrossRefGoogle Scholar
10Chiariello, G., Colavita, E., De Crescenzi, M., and Nannarone, S., Phys. Rev. B 29, 4878 (1984).CrossRefGoogle Scholar
11Yubero, F. and Tougaard, S., Phys. Rev. B 46, 2468 (1992).CrossRefGoogle Scholar
12Marietta, G., Iacona, F., Mondio, G., Neri, F., Patané, S., and Arena, A., Thin Solid Films 207, 313 (1992); Arena, A., Galli, G., Giorgi, R., Mezzasalma, A. M., Patané, S., and Saitta, G., Appl. Surf. Sci. 65, 303 (1993); Tougaard, S., Solid State Commun. 61, 547 (1987).Google Scholar
13Ohno, Y., Phys. Rev. B 39, 8209 (1989).CrossRefGoogle Scholar
14Matthew, J. A. D., Bertel, E., and Netzer, F. P., Surf. Sci. 184, L389 (1987).CrossRefGoogle Scholar
15Egerton, R. F., Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum Press, New York, 1986).Google Scholar
16Jansson, C., Hansen, H. S., Yubero, F., and Tougaard, S., J. Electron. Spectrosc. Relat. Phenom. 60, 301 (1992); Tougaard, S., J. Electron. Spectrosc. Relat. Phenom. 52, 243 (1990).CrossRefGoogle Scholar
17Van Attekum, P. M. Th. and Trooster, J. M., Phys. Rev. B 18, 6570 (1978).Google Scholar
18Ingram, J. C., Nebesny, K. W., and Pemberton, J. E., Appl. Surf. Sci. 44, 279 (1990); Ingram, J. C., Nebesny, K. W., and Pemberton, J. E., Appl. Surf. Sci. 44, 293 (1990).CrossRefGoogle Scholar
19Arena, A., Girlanda, R., Martino, G., Neri, F., and Saitta, G., Nuovo Cimento D 14, 881 (1992).CrossRefGoogle Scholar
20Jezierski, K., J. Phys. C 17, 475 (1984).CrossRefGoogle Scholar
21Thomas, T. D., J. Electron. Spectrosc. Relat. Phenom. 20, 117 (1980).CrossRefGoogle Scholar
22Lindquist, J. M. and Hemminger, J. C., J. Phys. Chem. 92, 1394 (1988).CrossRefGoogle Scholar
23Stewart, J. J. P., J. Computer Mol. Design 4 (1990), and references cited therein.Google Scholar
24Grobman, W. D., Pollak, R. A., Eastman, D. E., Maas, E. T. Jr., and Scott, B. A., Phys. Rev. Lett. 32, 534 (1974); Grobman, W. D. and Silverman, B. D., Solid State Commun. 19, 319 (1976).CrossRefGoogle Scholar