Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T08:18:15.881Z Has data issue: false hasContentIssue false

Electron transport enhancement in perovskite solar cell via the polarized BaTiO3 thin film

Published online by Cambridge University Press:  08 July 2020

Xinshu Luo
Affiliation:
Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
Jie Ding
Affiliation:
Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
Jinfeng Wang
Affiliation:
Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
Jingbo Zhang*
Affiliation:
Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
*
a)Address all correspondence to this author. e-mail: hxxyzjb@tjnu.edu.cn
Get access

Abstract

The ferroelectric material of BaTiO3 was introduced in the electron transport layer (ETL) of perovskite solar cells to improve the photogenerated electron transport. The sintered BaTiO3 thin films were polarized at different applied electric fields, and then TiO2 thin films were further deposited to be used as the ETL. The electric field was positively applied across the BaTiO3 thin film, and the photocurrent density of solar cell can be increased obviously. The results of electrochemical impedance and photoluminescence spectra indicate that the ordered polarization dipole moment inside the BaTiO3 thin film can accelerate the transport of photogenerated electrons from the ETL to the conducting glass substrate. The short-circuit photocurrent of perovskite solar cell is increased and thus the light-to-electric conversion efficiency is effectively improved to 13%. It is increased by 14% compared with that without the application of the positive electric field across the BaTiO3 thin film.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle ScholarPubMed
Prochowicz, D., Yadav, P., Saliba, M., Kubicki, D.J., Tavakoli, M.M., Zakeeruddin, S.M., Lewinski, J., Emsley, L., and Grätzel, M.: One-step mechanochemical incorporation of an insoluble cesium additive for high performance planar heterojunction solar cells. Nano. Energy 49, 523 (2018).CrossRefGoogle Scholar
Snaith, H.J.: Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623 (2013).CrossRefGoogle Scholar
Mazzarella, L., Lin, Y.H., Kirner, S., Morales-Vilche, A.B., Korte, L., Albrecht, S., Crossland, E., Stannowski, B., Case, C., Snaith, H.J., and Schlatmann, R.: Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Eng. Mater. 9, 1803241 (2019).CrossRefGoogle Scholar
Wang, Y.F., Li, S.B., Zhang, P., Liu, D.T., Gu, X.L., Sarvari, H., Ye, Z.B., Wu, J., Wang, Z.M., and Chen, Z.D.: Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18%. Nanoscale 8, 19661 (2016).CrossRefGoogle ScholarPubMed
Green, M.A., Ho-Baillie, A., and Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506 (2014).CrossRefGoogle Scholar
Sum, T.C. and Mathews, N.: Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 7, 2518 (2014).CrossRefGoogle Scholar
Zhang, C.X., Luo, Y.D., Chen, X.H., Ou-Yang, W., Chen, Y.W., Sun, Z., and Huang, S.M.: Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells. Appl. Surf. Sci. 388, 82 (2016).CrossRefGoogle Scholar
Etgar, L., Gao, P., Xue, Z.S., Peng, Q., Chandiran, A.K., Liu, B., Nazeeruddin, M.K., and Grätzel, M.: Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396 (2012).CrossRefGoogle ScholarPubMed
Xing, G.C., Wu, B., Chen, S., Chua, J., Yantara, N., Mhaisalkar, S., Mathews, N., and Sum, T.C.: Interfacial electron transfer barrier TiO2/CH3NH3PbI3 heterojunction. Small 11, 3606 (2015).CrossRefGoogle Scholar
Heo, J.H., Han, H.J., Kim, D., Ahn, T.K., and Im, S.H.: Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602 (2015).CrossRefGoogle Scholar
Suarez, B., Gonzalez-Pedro, V., Ripolles, T.S., Sanchez, R.S., Otero, L., and Mora-Sero, I.: Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J. Phys. Chem. Lett. 5, 1628 (2014).CrossRefGoogle ScholarPubMed
Cao, J., Wu, B.H., Chen, R.H., Wu, Y.Y.Q., Hui, Y., Mao, B.W., and Zheng, N.F.: Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: effect of surface passivation. Adv. Mater. 30, 1705596 (2018).CrossRefGoogle ScholarPubMed
Jiang, Q., Zhang, L.Q., Wang, H.L., Yang, X.L., Meng, J.H., Liu, H., Yin, Z.G., Wu, J.L., Zhang, X.W., and You, J.B.: Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016).CrossRefGoogle Scholar
Ke, W.J., Fang, G.J., Liu, Q., Xiong, L.B., Qin, P.L., Tao, H., Wang, J., Lei, H.W., Li, B.R., Wan, J.W., Yang, G., and Yan, Y.F.: Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137(3), 6730 (2015).CrossRefGoogle ScholarPubMed
Bi, D.Q., Moon, S.J., Haggman, L., Boschloo, G., Yang, L., Johansson, E.M.J., Nazeeruddin, M.K., Grätzel, M., and Hagfeldt, A.: Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv. 3, 18762 (2013).CrossRefGoogle Scholar
Mahmood, K., Swain, B.S., and Amassian, A.: 16.1% efficient hysteresis-free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays. Adv. Energy. Mater. 5, 1500568 (2015).CrossRefGoogle Scholar
Zhou, H.W., Shi, Y.T., Wang, K., Dong, Q.S., Bai, X.G., Xing, Y.J., Du, Y., and Ma, T.L.: Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells. J. Phys. Chem. C 119, 4600 (2015).CrossRefGoogle Scholar
Wang, H., Jiang, R., Sun, M., Yin, X., Guo, Y., He, M., and Wang, L.: Titanate hollow nanospheres as electron-transport layer in mesoscopic perovskite solar cell with enhanced performance. J. Mater. Chem. C 7, 1948 (2019).CrossRefGoogle Scholar
Ide, Y., Inami, N., Hattori, H., Saito, K., Sohmiya, M., Tsunoji, N., Komaguchi, K., Sano, T., Bando, Y., Golberg, D., and Sugahara, Y.: Remarkable charge separation and photocatalytic efficiency enhancement through interconnection of TiO2 nanoparticles by hydrothermal treatment. Angew. Chem., Int. Ed. 55, 3600 (2016).CrossRefGoogle ScholarPubMed
Xu, Z., Yin, X., Guo, Y., Pu, Y., and He, M.: Ru-doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance. J. Mater. Chem. C 6, 4746 (2018).CrossRefGoogle Scholar
Pintilie, L., Vrejoiu, I., Rhun, G.L., and Alexe, M.: Short-circuit photocurrent in epitaxial lead zirconate-titanate thin films. J. Appl. Phys. 101, 064109 (2007).CrossRefGoogle Scholar
Li, X.D., Wang, X.M., Peng, L.P., Zhang, K.B., Wu, W.D., and Tang, Y.J.: Ferroelectric thin film on a silicon-based pn junction: coupling photovoltaic properties. Ferroelectrics 500, 250 (2016).CrossRefGoogle Scholar
Liu, H., Chen, J., Ren, Y., Zhang, L.X., Pan, Z., Fan, L.L., and Xing, X.R.: Large photovoltage and controllable photovoltaic effect in PbTiO3-Bi(Ni2/3+xNb1/3–x)O3–δ ferroelectrics. Adv. Electron. Mater. 1, 1400051 (2015).CrossRefGoogle Scholar
Chen, B., Shi, J., Zheng, X.J., Zhou, Y., Zhu, K., and Priya, S.: Ferroelectric solar cells based on inorganic-organic hybrid perovskites. J. Mater. Chem. A 3(5), 7699 (2015).CrossRefGoogle Scholar
Kreisel, J., Alexe, M., and Thomas, P.A.: A photoferroelectric material is more than the sum of its parts. Nat. Mater. 11, 260 (2012).CrossRefGoogle Scholar
Liu, F.D., Wang, W.T., Wang, L., and Yang, G.D.: Ferroelectric-semiconductor photovoltaics:non-pn junction solar cells. Appl. Phys. Lett. 104, 103907 (2014).CrossRefGoogle Scholar
Wang, W.T., Liu, F.D., Lau, C.M., Wang, L., Yang, G.D., Zheng, D.W., and Li, Z.G.: Field-effect BaTiO3-Si solar cells. Appl. Phys. Lett. 104, 123901 (2014).CrossRefGoogle Scholar
Okamoto, Y. and Suzuki, Y.: Mesoporous BaTiO3/TiO2 double layer for electron transport in perovskite solar cells. J. Phys. Chem. C 120, 13995 (2016).CrossRefGoogle Scholar
Dutta, P.K. and Gregg, J.R.: Hydrothermal synthesis of tetragonal barium titanate (BaTiO3). Chem. Mater. 4, 843 (1992).CrossRefGoogle Scholar
Kern, R., Sastrawan, R., Ferber, J., Stangl, R., and Luther, J.: Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim. Acta 47, 4213 (2002).CrossRefGoogle Scholar
Christians, J.A., Fung, R.C.M., and Kamat, P.V.: An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758 (2014).CrossRefGoogle ScholarPubMed
Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476 (2015).CrossRefGoogle ScholarPubMed
Todinova, A., Idigoras, J., Salad, M., Kazim, S., and Anta, J.A.: Universal features of electron dynamics in solar cells with TiO2 contact: from dye solar cells to perovskite solar cells. J. Phys. Chem. Lett. 6, 3923 (2015).CrossRefGoogle ScholarPubMed
Zhang, Z.X., Luo, X.S., Ding, J., and Zhang, J.B.: Preparation of high quality perovskite thin film in ambient air using ethylacetate as anti-solvent. J. Solid State Chem. 274, 199 (2019).CrossRefGoogle Scholar
Zhang, Z.X., Luo, X.S., Wang, B., and Zhang, J.B.: Electron transport improvement of perovskite solar cell via ZIF-8 derived porous carbon skeleton. ACS Appl. Energy. Mater. 2, 2760 (2019).CrossRefGoogle Scholar
Wang, L.L., McCleese, C., Kovalsky, A., Zhao, Y.X., and Burda, C.: Femtosecond time-resolved transient absorption spectroscopy of CH3NH3PbI3 perovskite films: evidence for passivation effect of PbI2. J. Am. Chem. Soc. 136, 12205 (2014).CrossRefGoogle ScholarPubMed
Supplementary material: File

Luo et al. supplementary material

Figures S1-S6

Download Luo et al. supplementary material(File)
File 511 KB