Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T19:29:42.100Z Has data issue: false hasContentIssue false

Electronic, magnetic and dielectric properties of multiferroic MnTiO3

Published online by Cambridge University Press:  24 April 2012

Xiaohui Deng
Affiliation:
Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008, People’s Republic of China
Wei Lu*
Affiliation:
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
Hai Wang
Affiliation:
College of Materials Science and Engineering, Tongji University, Shanghai 201804, People’s Republic of China
Haitao Huang
Affiliation:
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
Jiyan Dai
Affiliation:
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: ap17198@inet.polyu.edu.hk
Get access

Abstract

The ground-state structural, electronic, magnetic, optical and dielectric properties of MnTiO3 are calculated using density functional theory within the generalized gradient approximation. The structure parameters obtained agree well with experimental results. The electronic structure results show that the G-type antiferromagnetic phase of LN-type MnTiO3 has an indirect band gap of 0.85 eV. The calculated local magnetic moment of Mn ion is 4.19 μB. The calculated Born effective charges (BECs, denoted by tensor Z*) show that the Z* of Ti and O atoms are significantly and anomalously large. Interestingly, ferroelectric spontaneous polarization of large magnitude is predicted to be along [111] direction with a magnitude of 87.95–105.22 μC/cm2. B-site Ti ions in 3 d0 state dominate ferroelectric polarization of multiferroic MnTiO3, whereas A-site Mn ions having partially filled 3 d5 orbitals are considered to contribute to its antiferromagnetic properties. Furthermore, it is predicted that multiferroic MnTiO3 shows good dielectric and optical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Salje, E.K.H.: Phase Transitions in Ferroelectic and Coelastic Crystal (Cambridge University Press, Cambridge, UK, 1990).Google Scholar
2.Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 17191722, 2003.CrossRefGoogle ScholarPubMed
3.Fiebig, M., Lottermoser, T.H., Fröhlich, D., Goltsev, A.V., and Pisarev, R.V.: Observation of coupled magnetic and electric domains. Nature 419, 818, 2002.CrossRefGoogle ScholarPubMed
4.Lottermoser, T. and Fiebig, M.: Magnetoelectric behavior of domain walls in multiferroic HoMnO3. Phys. Rev. B 70, 220407, 2004.CrossRefGoogle Scholar
5.Kimural, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., and Tokura, Y.: Magnetic control of ferroelectric polarization. Nature 426, 55, 2003.CrossRefGoogle Scholar
6.Taniguchi, K., Abe, N., Ohtani, S., and Arima, T.: Magnetoelectric memory effect of the nonpolar phase with collinear spin structure in multiferroic MnWO4. Phys. Rev. Lett. 102, 147201, 2009.CrossRefGoogle ScholarPubMed
7.Dho, J., Qi, X.D., Kim, H., MacManus-Driscol, J.L., and Blamire, M.G.: Large electric polarization and exchange bias in multiferroic BiFeO3. Adv. Mater. 18, 1445, 2006.CrossRefGoogle Scholar
8.Chu, Y.H., Martin, L.W., Holcomb, M.B., Gajek, M., Han, S.J., He, Q., Balke, N., Yang, H.H., Lee, D., Hu, W., Zhan, Q., Yang, P.L., Fraile-Rodríguez, A., Scholl, A., Wang, S.X., and Ramesh, R.: Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478, 2008.CrossRefGoogle ScholarPubMed
9.Ravindran, P., Vidya, R., Kjekshus, A., Fjellvåg, H., and ErikssonPhys, O.: Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys. Rev. B 74, 224412, 2006.CrossRefGoogle Scholar
10.Hill, N.A.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694, 2000.CrossRefGoogle Scholar
11.Seshadri, R. and Hill, N.A.: Visualizing the role of Bi 6s “Lone Pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem. Mater. 13, 2892, 2001.CrossRefGoogle Scholar
12.Lampis, N., Franchini, C., Satta, G., Geddo-Lehmann, A., and Massidda, S.: Electronic structure of PbFe1/2Ta1/2O3: Crystallographic ordering and magnetic properties. Phys. Rev. B 69, 064412, 2004.CrossRefGoogle Scholar
13.Neaton, J.B., Ederer, C., Waghmare, U.V., Spaldin, N.A., and Rabe, K.M.: First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113, 2005.CrossRefGoogle Scholar
14.Van Aken, B.B., Palstra, T.T.M., Filippetti, A., and Spaldin, N.A.: The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164, 2004.CrossRefGoogle ScholarPubMed
15.Cai, M.Q., Liu, J.C., Yang, G.W., Cao, Y.L., Tan, X., Chen, X.Y., Wang, Y.G., Wang, L.L., and Hu, W.Y.: First-principles study of structural, electronic, and multiferroic properties in BiCoO3. J. Chem. Phys. 126, 154708, 2007.CrossRefGoogle ScholarPubMed
16.Fennie, C.J.: Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 100, 167203, 2008.CrossRefGoogle ScholarPubMed
17.Varga, T., Kumar, A., Vlahos, E., Denev, S., Park, M., Hong, S., Sanehira, T., Wang, Y., Fennie, C.J., Streiffer, S.K., Ke, X., Schiffer, P., Gopalan, V., and Mitchell, J.F.: Coexistence of weak ferromagnetism and ferroelectricity in the high-pressure LiNbO3-type phase of FeTiO3. Phys. Rev. Lett. 103, 047601, 2009.CrossRefGoogle ScholarPubMed
18.Aimi, A., Katsumata, T., Mori, D., Fu, D., Itoh, M., Kyômen, T., Hiraki, K., Takahashi, T., and Inaguma, Y.: High-pressure synthesis and correlation between structure, magnetic, and dielectric properties in LiNbO3-type MnMO3 (M = Ti, Sn). Inorg. Chem. 50, 6392, 2011.CrossRefGoogle Scholar
19.Son, J.Y., Lee, G., Jo, M., Kim, H., Jang, H.M., and Shin, Y.: Heteroepitaxial ferroelectric ZnSnO3 thin film. J. Am. Chem. Soc. 131, 8386, 2009.CrossRefGoogle ScholarPubMed
20.Inaguma, Y., Yoshida, M., and Katsumata, T.: A polar oxide ZnSnO3 with a LiNbO3-type structure. J. Am. Chem. Soc. 130, 6704, 2008.CrossRefGoogle ScholarPubMed
21.Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864, 1964.CrossRefGoogle Scholar
22.Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133, 1965.CrossRefGoogle Scholar
23.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865, 1996.CrossRefGoogle ScholarPubMed
24.Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558, 1993.CrossRefGoogle ScholarPubMed
25.Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169, 1996.CrossRefGoogle ScholarPubMed
26.Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953, 1994.CrossRefGoogle ScholarPubMed
27.Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188, 1976.CrossRefGoogle Scholar
28.Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J., and Bechstedt, F.: Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112, 2006.CrossRefGoogle Scholar
29.Ko, J. and Prewitt, C.T.: High-pressure phase transition in MnTiO3 from the ilmenite to the LiNbO3 structure. Phys. Chem. Miner. 15, 355, 1988.CrossRefGoogle Scholar
30.Fabritchnyi, P.B., Korolenko, M.V., Afanasov, M.I., Danot, M., and Janod, E.: Mössbauer characterization of tin dopant ions in the antiferromagnetic ilmenite MnTiO3. Solid State Commun. 125, 341, 2003.CrossRefGoogle Scholar
31.Mufti, N., Blake, G.R., Mostovoy, M., Riyadi, S., Nugroho, A.A., and Palstra, T.T.M.: Magnetoelectric coupling in MnTiO3. Phys. Rev. B 83, 104416, 2011.CrossRefGoogle Scholar
32.Murnaghan, F.D.: Finite deformations of an elastic solid. Am. J. Math. 49, 235, 1937.CrossRefGoogle Scholar
33.Stoner, E.C.: Collective Electron Ferromagnetism. Proc. R. Soc. London, Ser. A 165, 372, 1938.Google Scholar
34.Ross, N.L., Ko, J., and Prewitt, C.T.: A new phase transition in MnTiO3: LiNbO3-perovskite structure. Phys. Chem. Miner. 16, 621, 1989.CrossRefGoogle Scholar
35.Wang, H., Zheng, Y., Cai, M.Q., Huang, H.T., and Chan, H.L.W.: First-principles study on the electronic and optical properties of BiFeO3. Solid State Commun. 149, 641, 2009.CrossRefGoogle Scholar
36.Veithen, M. and Ghosez, PH.: First-principles study of the dielectric and dynamical properties of lithium niobate. Phys. Rev. B 65, 214302, 2002.CrossRefGoogle Scholar
37.Nakayama, M., Nogami, M., Yoshida, M., Katsumata, T., and Inaguma, Y.: First-principles studies on novel polar oxide ZnSnO3: Pressure-induced phase transition and electric properties. Adv. Mater. 22, 2579, 2010.CrossRefGoogle ScholarPubMed
38.Baroni, S., de Gironcoli, S., Dal Corso, A., and Giannozzi, P.: Phonons and related crystal properties from density functional perturbation theory. Rev. Mod. Phys. 73, 515, 2001.CrossRefGoogle Scholar
39.Roy, A., Prasad, R., Auluck, S., and Garg, A.: First-principles calculations of born effective charges and spontaneous polarization of ferroelectric bismuth titanate. J. Phys. Condens. Matter 22, 165902, 2010.CrossRefGoogle ScholarPubMed
40.Wang, H., Huang, H.T., and Wang, B.: First-principles study of structural, electronic, and optical properties of ZnSnO3. Solid State Commun. 149, 1849, 2009.CrossRefGoogle Scholar
41.Xu, M., Wang, S.Y., Yin, G., Li, J., Zheng, Y.X., Chen, L.Y., and Jia, Y.: Optical properties of cubic Ti3N4, Zr3N4 and Hf3N4. Appl. Phys. Lett. 89, 151908, 2006.CrossRefGoogle Scholar
42.Syono, Y., Akimoto, S., Ishikawa, Y., and Endoh, Y.: A new high-pressure phase of MnTiO3 and its magnetic property. J. Phys. Chem. Solids 30, 1665, 1969.CrossRefGoogle Scholar
43.Wu, X., Qin, S., and Dubrovinsky, L.: Structural characterization of the FeTiO3–MnTiO3 solid solution. J. Solid State Chem. 183, 2483, 2010.CrossRefGoogle Scholar
Supplementary material: File

Deng et al. supplementary material

Supplementary material

Download Deng et al. supplementary material(File)
File 148.5 KB