Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T11:35:48.520Z Has data issue: false hasContentIssue false

Electronic structure, lattice dynamics, and thermoelectric properties of bismuth nanowire from first-principles calculation

Published online by Cambridge University Press:  16 March 2017

Peng-Xian Lu*
Affiliation:
College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
Meng Zhang
Affiliation:
College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
Wen-Jun Zou
Affiliation:
College of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
Chun Kong
Affiliation:
School of Energy and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
*
a) Address all correspondence to this author. e-mail: pengxian_lu@haut.edu.cn
Get access

Abstract

To reveal the electron and phonon transport mechanism in bismuth nanowire (BiNW), the electronic structure, the lattice dynamics, and the thermoelectric properties of bismuth bulk (BiB) and BiNW were investigated in this paper through first-principles calculation and the Boltzmann transport theory. The results suggest that BiNW possesses an increased electrical conductivity and Seebeck coefficient, while its thermal conductivity, especially phonon thermal conductivity, is reduced significantly as compared to BiB. As a consequence, a largely enhanced figure of merit (ZT) at 300 K of 2.73 is achieved for BiNW. The enhancement in electrical conductivity and Seebeck coefficient of BiNW is originated from its high density of states and large effective mass of carriers. Such significant suppression in phonon thermal conductivity of BiNW is ascribed to the reduced phonon vibration frequency, the decreased phonon density of states, and the shortened mean free path of phonons. So BiNW should be viewed as an excellent candidate for a thermoelectric material with a high figure of merit. Moreover, we have provided a complete understanding on the relationship between the electronic structure, the dynamics, and the thermoelectric properties of BiNW.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: C. Robert Kao

A previous error in this article has been corrected, see 10.1557/jmr.2017.240.

References

REFERENCES

Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 14571461 (2008).Google Scholar
Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7, 105114 (2008).CrossRefGoogle ScholarPubMed
Yang, M.J., Shen, Q., and Zhang, L.M.: Effect of nanocomposite structure on the thermoelectric properties of 0.7 at.% Bi-doped Mg2Si nanocomposite. Chin. Phys. B 20, 106202106202-6 (2011).CrossRefGoogle Scholar
Li, H., Tang, X.F., Cao, W.Q., and Zhang, Q.J.: Quick preparation and thermal transport properties of nanostructured β-FeSi2 bulk material. Chin. Phys. B 18, 287292 (2009).Google Scholar
Hicks, L.D. and Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B: Condens. Matter Mater. Phys. 47, 1272712731 (1993).Google Scholar
Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., and Majumdar, A.: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).CrossRefGoogle ScholarPubMed
Roh, J.W., Hippalgaonkar, K., Ham, J.H., Chen, R.K., Li, M.Z., Ercius, P., Majumdar, A., Kim, W., and Lee, W.: Observation of anisotropy in thermal conductivity of individual single-crystalline bismuth nanowires. ACS Nano 5, 39543960 (2011).Google Scholar
Kim, W.: Thermal transport in individual thermoelectric nanowires: A review. Mater. Res. Innovations 15, 375385 (2011).Google Scholar
Murata, M., Tsunemi, F., Saito, Y., Shirota, K., Fujiwara, K., Hasegawa, Y., and Komine, T.: Temperature coefficient of electrical resistivity in individual single-crystal bismuth nanowires. J. Electron. Mater. 42, 21432150 (2013).Google Scholar
Liang, G., Huang, W., Koong, C.S., Wang, J.S., and Lan, J.: Geometry effects on thermoelectric properties of silicon nanowires based on electronic band structures. J. Appl. Phys. 107, 014317014317-5 (2010).CrossRefGoogle Scholar
Shi, L., Yao, D., Zhang, G., and Li, B.: Size dependent thermoelectric properties of silicon nanowires. Appl. Phys. Lett. 95, 063102063102-3 (2009).Google Scholar
Kim, H., Kim, I., Choi, H.J., and Kim, W.: Thermal conductivities of Si1−x Ge x nanowires with different germanium concentrations and diameters. Appl. Phys. Lett. 96, 233106233106-3 (2010).Google Scholar
Li, D.Y., Wu, Y.Y., Kim, P., Shi, L., Yang, P.D., and Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83, 29342936 (2003).Google Scholar
Dresselhaus, M.S., Lin, Y.M., Rabin, O., and Dresselhaus, G.: Bismuth nanowires for thermoelectric applications. Microscale Thermophys. Eng. 7, 207219 (2003).Google Scholar
Cronin, S.B., Lin, Y.M., Rabin, O., Black, M.R., Dresselhaus, G., Dresselhaus, M.S., and Gai, P.L.: Bismuth nanowires for potential applications in nanoscale electronics technology. Microsc. Microanal. 8, 5863 (2002).Google Scholar
Gallo, C.F., Chandrasekhar, B.S., and Sutter, P.H.: Transport properties of bismuth single crystals. J. Appl. Phys. 34, 144148 (1963).CrossRefGoogle Scholar
Hicks, L.D., Harman, T.C., and Dresselhaus, M.S.: Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Appl. Phys. Lett. 63, 32303232 (1993).Google Scholar
Lin, Y.M., Sun, X., and Dresselhaus, M.S.: Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys. Rev. B: Condens. Matter Mater. Phys. 62, 46104623 (2000).Google Scholar
Moore, A.L., Pettes, M.T., Zhou, F., and Shi, L.: Thermal conductivity suppression in bismuth nanowires. J. Appl. Phys. 106, 034310034310-7 (2009).CrossRefGoogle Scholar
Cucka, P. and Barrett, C.S.: The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi. J. Appl. Crystallogr. 2, 3036 (1969).Google Scholar
Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 27172744 (2002).Google Scholar
Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133A1138 (1965).Google Scholar
Marlo, M. and Milman, V.: Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals. Phys. Rev. B: Condens. Matter Mater. Phys. 62, 28992907 (2000).Google Scholar
Hammer, B., Hansen, L.B., and Norkov, J.K.: Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 74137421 (1999).Google Scholar
Franscis, G.P. and Payne, M.C.: Finite basis set corrections to total energy pseudopotential calculations. J. Phys.: Condens. Matter 2, 43954404 (1990).Google Scholar
Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B: Condens. Matter Mater. Phys. 13, 51885192 (1976).CrossRefGoogle Scholar
Li, J.C., Wang, C.L., Wang, M.X., Peng, H., Zhang, R.Z., Zhao, M.L., Liu, J., Zhang, J.L., and Mei, L.M.: A study of the vibrational and thermoelectric properties of silicon type I and II clathrates. J. Appl. Phys. 105, 043503043503-7 (2009).Google Scholar
Murata, M., Nakamura, D., Hasegawa, Y., Komine, T., Taguchi, T., Nakamura, S., Jaworski, C.M., Jovovic, V., and Heremans, J.P.: Mean free path limitation of thermoelectric properties of bismuth nanowire. J. Appl. Phys. 105, 113706 (2009).Google Scholar
Huang, K.: Solid State Physics (People’s Education Press, Beijing, 1979); p. 281 [in Chinese].Google Scholar
Stiewe, C., Bertini, L., Toprak, M., Christensen, M., Platzek, D., Williams, S., Gatti, C., Müller, E., Iversen, B.B., Muhammed, M., and Rowe, M.: Nanostructured Co1−x Ni x (Sb1−y Tey)3 skutterudites: Theoretical modeling, synthesis and thermoelectric properties. J. Appl. Phys. 97, 044317044317-9 (2005).Google Scholar
Wang, D., Tang, L., Long, M.Q., and Shuai, Z.G.: First-principles investigation of organic semiconductors for thermoelectric applications. J. Chem. Phys. 131, 224704224704-3 (2009).Google Scholar
Kono, Y., Ohya, N., Taguchi, T., Suekuni, K., Takabatake, T., Yamamoto, S., and Akai, K.: First-principles study of type-I and type-VIII Ba8Ga16Sn30 clathrates. J. Appl. Phys. 107, 123720123720-6 (2010).Google Scholar
Peng, H., Wang, C.L., Li, J.C., Zhang, R.Z., Wang, H.C., and Sun, Y.: Theoretical investigation of the thermoelectric transport properties of BaSi2 . Chin. Phys. B 20, 046103046103-4 (2011).Google Scholar
Nakamura, D., Murata, M., Hasegawa, Y., Komine, T., Uematsu, D., Nakamura, S., and Taguchi, T.: Thermoelectric properties of a 593-nm individual bismuth nanowire prepared using a quartz template. J. Electron. Mater. 39, 19601965 (2010).Google Scholar
Ashcroft, N.W. and Mermin, N.D.: Solid State Physics (Harcourt, Brace, New York, 1976).Google Scholar
Lv, H.Y., Liu, H.J., Shi, J., Tang, X.F., and Uher, C.: Optimized thermoelectric performance of Bi2Te3 nanowires. J. Mater. Chem. A 1, 68316838 (2013).CrossRefGoogle Scholar
Caillat, T., Kulleck, J., Borshchevsky, A., and Fleurial, J.P.: Preparation and thermoelectric properties of the skutterudite-related phase Ru0.5Pd0.5Sb3 . J. Appl. Phys. 79, 84198426 (1996).Google Scholar
Pichanusakorn, P. and Bandaru, P.: Nanostructured thermoelectric. Mater. Sci. Eng., R 67, 1963 (2010).Google Scholar
Ziman, J.M.: Principles of the Theory of Solids (Cambridge University Press, Cambridge, U.K., 1972).Google Scholar
Cutler, M., Leavy, J.F., and Fitzpatrick, R.L.: Electronic transport in semimetallic cerium sulfide. Phys. Rev. 133, A1143A1152 (1964).Google Scholar
Menon, M., Richter, E., and Subbaswamy, K.R.: Structural and vibrational properties of Si clathrates in a generalized tight-binding molecular-dynamics scheme. Phys. Rev. B: Condens. Matter Mater. Phys. 56, 1229012295 (1997).Google Scholar
Heremans, J., Thrush, C.M., Lin, Y.M., Cronin, S., Zhang, Z., Dresselhaus, M.S., and Mansfield, J.F.: Bismuth nanowire arrays: Synthesis and galvanomagnetic properties. Phys. Rev. B: Condens. Matter Mater. Phys. 61, 29212930 (2000).Google Scholar
Zhou, G., Li, L., and Li, G.H.: Semimetal to semiconductor transition and thermoelectric properties of bismuth nanotubes. J. Appl. Phys. 109, 114311114311-8 (2011).CrossRefGoogle Scholar
Hasegawa, Y., Murata, M., Tsunemi, F., Saito, Y., Shirota, K., Komine, T., Dames, C., and Garay, J.: Thermal conductivity of an individual Bismuth nanowire covered with a quartz template using a 3-omega technique. J. Electron. Mater. 42, 20482056 (2013).CrossRefGoogle Scholar
Huang, K.: Solid State Physics (People Education Press, Beijing, 1979); pp. 145148.Google Scholar
Bux, S.K., Blair, R.G., Gogna, P.K., Lee, H., Chen, G., Dresselhaus, M.S., Kaner, R.B., and Fleurial, J.P.: Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19, 24452452 (2009).Google Scholar
Henry, A.S. and Chen, G.: Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J. Comput. Theor. Nanosci. 5, 141152 (2008).Google Scholar