Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-11T05:42:41.479Z Has data issue: false hasContentIssue false

Electrospun single-crystal MoO3 nanowires for biochemistry sensing probes

Published online by Cambridge University Press:  03 March 2011

P. Gouma*
Affiliation:
Department of Materials Science and Engineering, State University of New York, Stony Brook, New York 11794-2275
K. Kalyanasundaram
Affiliation:
Department of Materials Science and Engineering, State University of New York, Stony Brook, New York 11794-2275
A. Bishop
Affiliation:
Department of Materials Science and Engineering, State University of New York, Stony Brook, New York 11794-2275
*
a) Address all correspondence to this author. e-mail: pgouma@notes.cc.sunysb.edu
Get access

Abstract

Single-crystal MoO3 nanowires were produced using the electrospinning technique. High-resolution transmission electron microscopy revealed that the one-dimensional nanostructures are 10–50 nm in diameter, on the order of 1–2 μm in length, and have the orthorhombic MoO3 structure. The structure, crystallinity, and sensoric character of these electrostatically processed nanowires are discussed. It has been demonstrated that the nonwoven network of MoO3 nanowires exhibits an order of magnitude higher sensitivity compared with that of a sol-gel based sensor. This is promising for use of the nanowire sensors in nanomedicine.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Li, D., Xia, Y.: Fabrication of titania nanofibers by electrospinning. Nano Lett. 3(4), 555(2003).CrossRefGoogle Scholar
2.Madhugiri, S., Sun, B., Smirniotis, P.G., Ferraris, J.P.: Electrospun mesoporous titanium dioxide fibers. Microporous Mesoporous Mater. 69, 77 (2004).Google Scholar
3.Tomer, V., Teye-Mensah, R., Tokash, J.C., Stojilovic, N.: Selective emitters for thermophotovoltaics: Erbia-modified electrospun titania nanofibers. Sol. Energy Mater. Sol. Cells 85(4), 477(2005).CrossRefGoogle Scholar
4.Guan, H., Shao, C., Wen, S., Chen, B.: A novel method for preparing Co3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor. Mater. Chem. Phys. 82, 1002 (2003).Google Scholar
5.Viswanathamurthi, P., Bhattarj, N., Kim, H.Y.: Vanadium pentoxide nanofibers by electrospinning. Scripta Mater. 49, 577 (2003).Google Scholar
6.Dharamaraj, N., Park, H.C., Lee, B.M.: Preparation and morphology of magnesium titanate nanofibers via electrospinning. Inorg. Chem. Commun. 7, 431 (2004).CrossRefGoogle Scholar
7.Viswanathamurthi, P., Bhattarai, N., Kim, H.Y., Cha, D.I., Lee, D.R.: Preparation and morphology of palladium oxide fibers via electrospinning. Mater. Lett. 58, 3368 (2004).Google Scholar
8.Dharmaraj, N., Park, H.C., Kim, C.K., Kim, H.Y., Lee, D.R.: Nickel titanate nanofibers by electrospinning. Mater. Chem. Phys. 87, 5 (2004).CrossRefGoogle Scholar
9.Viswanathamurthi, P., Bhattarj, N., Kim, C.K., Kim, H.Y.: Ruthenium-doped TiO2 fibers by electrospinning. Inorg. Chem. Commun. 7, 679 (2004).CrossRefGoogle Scholar
10.Sawicka, K.M., Prasad, A.K., Gouma, P.I.: Metal oxide nanowires for use in chemical sensing applications. Sensor Lett. 3, 1 (2005).CrossRefGoogle Scholar
11.Gouma, P.I., Prasad, A.K., Iyer, K.K.: Selective nanoprobes for “signaling gases.” Nanotechnology 17 S48(2006).CrossRefGoogle Scholar
12.Gouma, P.: Nanostructured oxide-based selective gas sensor arrays for chemical monitoring and medical diagnostics in isolated environments. Habitation J. 10, 99 (2005).CrossRefGoogle ScholarPubMed
13.Geatches, R.M., Chadwick, A.V., Wright, J.D.: Single-crystal metal-oxide gas sensors. Sens. Actuators, B Chem. 4(3–4), 467(1991).Google Scholar
14.Kolmakov, A., Moskovits, M.: Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Res. 34, 151 (2004).Google Scholar
15.Wang, S.T., Zhang, Y.G., Ma, X.C., Wang, W.Z., Li, X.B., Zhang, Z.D., Qian, Y.T.: Hydrothermal route to single crystalline α-MoO3 nanobelts and hierarchical structures. Solid State Commun. 136, 283 (2005).CrossRefGoogle Scholar
16.Taurino, A.M., Forleo, A., Siciliano, P., Stalder, M., Nesper, R.Synthesis, electrical characterization, and gas sensing properties of molybdenum oxide nanorods. Appl. Phys. Lett. 88, 152111-1 (2006).Google Scholar
17.Camacho-Bragado, G.A., Hose-Yacaman, M.: Self-assembly of Molybdite nanoribbons. Appl. Phys. A 82, 19 (2006).CrossRefGoogle Scholar
18.Li, Y.B., Bando, Y., Goldberg, D., Kurashima, K.: Field emission from MoO3 nanobelts. Appl. Phys. Lett. 81, 5048 (2002).Google Scholar
19.Li, Y.B., Bando, Y.S.: Quasi-aligned nanotubes grown on Ta substrate. Chem. Phys. Lett. 364, 484 (2002).CrossRefGoogle Scholar
20.Satishkumar, B.C., Govindaraj, A., Nath, M., Rao, C.N.R.: Synthesis of metal oxide nanorods using carbon nanotubes as templates. J. Mater. Chem. 10, 2115 (2000).CrossRefGoogle Scholar
21.Ogihara, H., Takenaka, S., Yamanaka, I., Tanabe, E., Genseki, A., Otsuka, K.: Fabrication of single crystalline MoO3 nanobelts by using carbons. Chem. Lett. (Jpn.) 34, 1428 (2005).Google Scholar
22.Li, X.L., Liu, J.F., Li, Y.D.: Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts. Appl. Phys. Lett. 81, 4832 (2002).CrossRefGoogle Scholar
23.Formhals, A.: U.S. Patent No. 1,975,504 (1934).Google Scholar
24.Sawicka, K., Gouma, P.I. Electrospun composite nanofibers for functional applications. J. Nanopart. Res. (2006, in press).Google Scholar
25.K. Arun Prasad, K. Study of gas specificity in MoO3/WO3 thin film sensors and their arrays, Ph.D. Thesis, SUNY, Stony Brook, NY (2005).Google Scholar
26.JCPDS CAS-No. 05-0508, 2000, JCPDS-International Centre for Diffraction Data. Ref: Swanson and Fuyat: Natl. Bur. Stand. Circ. 539(3), 30 (1954).Google Scholar
27.Gouma, P.I., Mills, M.J.: Anatase to rutile transformation in titania powders. J. Am. Ceram. Soc. 84(3), 619(2001).CrossRefGoogle Scholar
28.Gouma, P.I., Dutta, P.K., Mills, M.J.: Structural stability of titania thin films. Nanostruct. Mater. 11(8), 1231(1999).Google Scholar
29.Prasad, A.K., Kubinski, D., Gouma, P.I.: Comparison of Sol-gel- and RF-sputtered MoO3 thin film gas sensors for selective ammonia detection. Sens. Actuators, B 9, 25 (2003).CrossRefGoogle Scholar
30.Prasad, A.K., Gouma, P.I., Kubinksi, D.J., Visser, J.H., Soltis, R.E., Schmitz, P.J.: Reactively sputtered MoO3 films for ammonia sensing. Thin Solid Films 436, 46 (2003).CrossRefGoogle Scholar