Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T15:10:22.711Z Has data issue: false hasContentIssue false

Elephant ivory: A low thermal conductivity, high strength nanocomposite

Published online by Cambridge University Press:  01 January 2006

Michael B. Jakubinek
Affiliation:
Institute for Research in Materials and Department of Physics, Dalhousie University,Halifax, NS, Canada B3H 4J3
Champika J. Samarasekera
Affiliation:
Institute for Research in Materials and Department of Physics, Dalhousie University,Halifax, NS, Canada B3H 4J3
Mary Anne White*
Affiliation:
Institute for Research in Materials and Departments of Physics and Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4J3
*
a)Address all correspondence to this author. e-mail: Mary.Anne.White@Dal.ca
Get access

Abstract

There has been much recent interest in heat transport in nanostructures, and alsoin the structure, properties, and growth of biological materials. Here we present measurements of thermal properties of a nanostructured biomineral, ivory. The room-temperature thermal conductivity of ivory is anomalously low in comparison with its constituent components. Low-temperature (2–300 K) measurements ofthermal conductivity and heat capacity reveal a glass-like temperature dependenceof the thermal conductivity and phonon mean free path, consistent with increased phonon-boundary scattering associated with nanostructure. These results suggest that biomineral-like nanocomposite structures could be useful in the design of novel high-strength materials for low thermal conductivity applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chen, G.: Phonon heat conduction in nanostructures. Int. J. Therm. Sci. 39, 471 (2000).CrossRefGoogle Scholar
2.Cahill, D.G., Ford, W.K., Goodson, K.E., Majumdar, A., Maris, H.J., Merlin, R. and Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93, 790 (2002).Google Scholar
3.Balandin, A.A. In Encyclopedia of Nanoscience and Nanotechnology, Vol. 10, edited by Nalwa, H.S. (American Scientific Publishers, Stevenson Ranch, CA, 2004), pp. 425445.Google Scholar
4.Su, X.W. and Cui, F.Z.: Hierarchical structure of ivory: From nanometer to centimeter. Mater. Sci. Eng. C 7, 19 (1999).CrossRefGoogle Scholar
5.Cui, F.Z., Wen, H.B., Zhang, H.B., Ma, C.L. and Li, H.D.: Nanophase hydroxyapatite-like crystallites in natural ivory. J. Mater. Sci. Lett. 13, 1042 (1994).Google Scholar
6.Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, G.L., Blackwell, J., Rieke, P.C., Thompson, D.H., Wheeler, A.P., Vies, A. and Caplan, A.I.: Innovative materials processing strategies: A biomimetic approach. Science 255, 1098 (1992).Google Scholar
7.Jeronimidis, G. and Atkins, A.G.: Mechanics of biological materials and structures: Nature's lessons for the engineer Proc. Instn. Mech. Eng. 209, 221 (1995).Google Scholar
8.Oliveira, A.L., Mano, J.F. and Reis, R.L.: Nature-inspired calcium phosphate coatings: Present status and novel advances in the science of mimicry. Curr. Opin. Solid State Mater. Sci. 7, 309 (2003).Google Scholar
9.Vogel, S.: Cats’ Paws and Catapults: Mechanical Worlds of Nature and People (W.W. Norton, New York, 1998), Chap. 12 and 13.Google Scholar
10.Rho, J-Y., Kuhn-Spearing, L. and Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92 (1998).Google Scholar
11.Song, F. and Bai, Y.L.: Effects of nanostructures on the fracture strength of interfaces in nacre. J. Mater. Res. 18, 1741 (2003).Google Scholar
12.Wang, R.Z., Suo, Z., Evans, A.G., Yao, N. and Aksay, I.A.: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485 (2001).Google Scholar
13.Evans, A.G., Suo, Z., Wang, R.Z., Aksay, I.A., He, M.Y. and Hutchinson, J.W.: Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475 (2001).Google Scholar
14.Kamat, S., Su, X., Ballarini, R. and Heuer, A.H.: Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature 405, 1036 (2000).Google Scholar
15.Tan, J. and Saltzman, W.M.: Biomaterials with hierarchically defined micro- and nanoscale structure. Biomaterials 25, 3593 (2004).Google Scholar
16.Tang, Z., Kotov, N.A., Magonov, S. and Ozturk, B.: Nanostructured artificial nacre. Nat. Mater. 2, 413 (2003).CrossRefGoogle ScholarPubMed
17.Serizawa, M., Takemura, Y., Wakano, H. and Takahashi, T.: Microsctructure of ivory. Gypsum & Lime 165, 23 (1980).Google Scholar
18.Grierson, J.P. and Neville, A.C.: Helicoidal architecture of fish eggshell. Tissue Cell 13, 819 (1981).Google Scholar
19.Cui, F.Z., Wen, H.B., Zhang, H.B., Li, H.D. and Liu, D.C.: Anisotropic indentation morphology and hardness of natural ivory. Mater. Sci. Eng. C 2, 87 (1994).CrossRefGoogle Scholar
20.Rubner, M.: Synthetic sea shell. Nature 423, 925 (2003).CrossRefGoogle ScholarPubMed
21.Fratzl, P., Gupta, H.S., Paschalis, E.P. and Roschger, P.: Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14, 2115 (2004).CrossRefGoogle Scholar
22.Samarasekera, C.J. and White, M.A. (unpublished work).Google Scholar
23.Arola, D. and Reprogel, R.K.: Effects of aging on the mechanical behavior of human dentin. Biomaterials 26, 4051 (2005).Google Scholar
24.Bonfield, W. and Li, C.H.: Deformation and fracture of ivory. J. Appl. Phys. 36, 3181 (1965).Google Scholar
25.Cahill, D.G. and Pohl, R.O.: Lattice vibrations and heat transport in crystals and glasses. Annu. Rev. Phys. Chem. 39, 93 (1988).Google Scholar
26.Chu, T.K.: Thermal conductivity of bone at low temperatures. J. Appl. Phys. 43, 3207 (1972).CrossRefGoogle Scholar
27.CRC Handbook of Chemistry and Physics, 61st ed., edited by Weast, R.C. and Astle, M.J. (CRC Press Inc., Boca Raton, FL, 1980), pp. D-174, E-11.Google Scholar
28.Putnam, S.A., Cahill, D.G., Ash, B.J. and Schadler, L.S.: High-precision thermal conductivity measurements as a probe of polymer/nanoparticle interfaces. J. Appl. Phys. 94, 6785 (2003).Google Scholar
29.Colbert, C. and Garret, C.: Photodensitometry of bone roentgenograms with an on-line computer. Clin. Orthop. 65, 39 (1969).CrossRefGoogle ScholarPubMed
30.Dobrin, P.B.: Mechanical properties of arteries. Physiol. Rev. 58, 397 (1978).CrossRefGoogle ScholarPubMed
31.Andronikashvili, E.L., Mrevlishvili, G.M., Japaridze, G.S., Sokhadze, V.M. and Kvavadze, K.A.: Thermal properties of collagen in helical and random coiled states in the temperature range from 4° to 300 °C. Biopolymers 15, 1991 (1976).CrossRefGoogle Scholar
32.Bhattacharya, A. and Mahajan, R.L.: Temperature dependence of thermal conductivity of biological tissues. Physiol. Meas. 24, 769 (2003).CrossRefGoogle ScholarPubMed
33.Turek, S.L.: Turek's Orthopaedics: Principles and Their Application 5th ed. edited by Weinstein, S.L. and Buckwalter, J.A. (Lippincott, Philadelphia, PA, 1994), pp. 2426.Google Scholar
34.Werner, J. and Buse, M.: Temperature profiles with respect to inhomogeneity and geometry of the human body. J. Appl. Physiol. 65, 1100 (1988).Google Scholar
35.Torgalkar, A.M.: A resonance frequency technique to determine elastic modulus of hydroxyapatite. J. Biomed. Mater. Res. 13, 907 (1979).CrossRefGoogle ScholarPubMed
36.Boeree, N.R., Dove, J., Copper, J.J., Knowles, J. and Hastings, G.W.: Development of a degradable composite for orthopaedic use: Mechanical evaluation of an hydroxyapatite-polyhydroxybutyrate composite material. Biomaterials 14, 793 (1993).Google Scholar
37.Moroi, H.H., Okimoto, K., Moroi, R. and Terada, Y.: Numeric approach to the biomechanical analysis of thermal effects in coated implants. Int. J. Prosthodont. 6, 564 (1993).Google Scholar
38.Rajaram, A.: Tensile properties and the fracture of ivory. J. Mater. Sci. Lett. 5, 1077 (1986).Google Scholar
39.Craig, R.G. and Powers, J.M. eds. Restorative Dental Materials, 11th ed. (Mosby, St. Louis, MO, 2002), p. 140.Google Scholar
40.Manly, R.S., Hodge, H.C. and Ange, L.E.: Density and refractive index studies of dental hard tissues. II. Density distribution curves. J. Dent. Res. 18, 203 (1939).Google Scholar
41.Peyton, F.A., Mahler, D.B. and Hershenov, B.: Physical properties of dentine. J. Dent. Res. 31, 366 (1952).CrossRefGoogle Scholar
42.J.W., Stanford, K.V., Weigel, G.C., Paffenbarger and W.T., Sweeney: Compressive properties of hard tooth tissues and some restorative materials. J. Am. Dent. Ass. 60, 746 (1960).Google Scholar
43.Bowen, R.L. and Rodriguez, M.M.: Tensile strength and modulus of elasticity of tooth structure and several restorative materials. J. Am. Dent. Ass. 64, 378 (1962).CrossRefGoogle ScholarPubMed
44.Lehman, M.L.: Tensile strength of human dentin J. Dent. Res. 46, 197 (1967).CrossRefGoogle ScholarPubMed
45.Peyton, F.A. and Simeral, W.G.: The Specific Heat of Tooth Structure. University of Michigan School of Dentistry. Alumni Bull. 33 (1954).Google Scholar
46.Fukase, Y., Saitoh, M., Kaketani, M., Ohashi, M. and Nishiyama, M.: Thermal coefficients of paste-paste type pulp capping cements. Dent. Mater. J. 11, 189 (1992).CrossRefGoogle ScholarPubMed
47.Brown, W.S., Dewey, W.A. and Jacobs, H.R.: Thermal properties of teeth. J. Dent. Res. 49, 752 (1970).CrossRefGoogle ScholarPubMed
48.Craig, R.G., Peyton, F.A. and Johnson, D.W.: Compressive properties of enamel, dental cements, and gold. J. Dent. Res. 40, 936 (1961).Google Scholar
49.Kijima, T. and Tsutsumi, M.: Preparation and thermal properties of dense polycrystalline oxyhydroxyapatite. J. Am. Ceram. Soc. 62, 455 (1979).Google Scholar
50.Egan, E.P. Jr.Wakefield, Z.T. and Elmore, K.L.: Low-temperature heat capacity of hydroxyapatite. J. Am. Chem. Soc. 73, 5579 (1951).Google Scholar