Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T00:43:06.287Z Has data issue: false hasContentIssue false

Elstic energy changes accompanying gamma-prime rafting in nickel-base superalloys

Published online by Cambridge University Press:  31 January 2011

Julius C. Chang
Affiliation:
IBM General Technology Division, Essex Junction, Vermont 05452-4299
Samuel M. Allen
Affiliation:
Massachusetts Institute of Technology, Center for Materials Science and Engineering, Cambridge, Massachusetts 02139
Get access

Abstract

Eshelby's equivalent inclusion method is applied to the case of a single, inhomogeneous, ellipsoidal precipitate in an infinite matrix to study the morphological changes of the gamma-prime precipitates in nickel-base superalloys due to the influence of lattice constant misfit, elastic inhomogeneity and anisotropy, applied stress, and interfacial energy. The energy-minimizing inclusion shapes depend very sensitively on the degree of elastic inhomogeneity, on the sense and magnitude of the applied stress, and on the sense of the lattice constant misfit. The interfacial energy contribution can dominate that of elastic strain energy for small precipitate sizes, elastically compliant systems, nearly homogeneous alloys, and/or nearly isotropic materials. Calculations are carried out for two well-characterized nickel-base alloys: a Ni–13.5Al alloy (positive misfit, elastically hard inclusions) studied by Miyazaki et al. and CMSX-3 (negative misfit, elastically soft inclusions) studied by Pollock. The Eshelby energy calculations correctly predict the precipitate morphologies observed by Miyazaki et al. and by Pollock.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pearson, D. D., Lemkey, F. D., and Kear, B. H., in Superalloys 1980, 4th Int. Conf. on Superalloys (ASM, Metals Park, OH, 1980), p. 513.Google Scholar
2.Pearson, D.D., Kear, B.H., and Lemkey, F. D., in Creep and Fracture of Engineering Materials and Structures, edited by Wilshire, B. and Owen, D. R. J. (Pineridge Press, Swansea, U. K., 1981), p. 213.Google Scholar
3.Aigeltinger, E. and Kerser, M., Metals Forum 4 (1,2), 112 (1981).Google Scholar
4.Nathal, M. V. and Ebert, L.J., in Superalloys 1984, edited by Maurice Gell, Kortovich, C. S., Bricknell, R. H., Kent, W. B., and Radavich, J.F. (TMS-AIME, Warrendale, PA, 1984), p. 125.Google Scholar
5.Nathal, M. V. and Ebert, L.J., Metall. Trans. A 16A, 1863 (1985).CrossRefGoogle Scholar
6.The Superalloys, edited by Sims, C. T. and Hagel, W. C. (Wiley, New York, 1972).Google Scholar
7.Chang, J. C., Elastic Energy Changes Accompanying Gamma-Prime Rafting in Nickel–Base Superalloys, Ph.D. Thesis (Department of Materials Science and Engineering, M.I.T., 1989).Google Scholar
8.Miyazaki, T., Nakamura, K., and Mori, H., J. Mater. Sci. 14, 1827 (1979).CrossRefGoogle Scholar
9.Tien, J.K. and Copley, S. M., Metall. Trans. 2, 215 (1971).CrossRefGoogle Scholar
10.Tien, J. K. and Copley, S. M., Metall. Trans. 2, 543 (1971).CrossRefGoogle Scholar
11.Nathal, M. V. and Ebert, L. J., Metall. Trans. A 16A, 1849 (1985).CrossRefGoogle Scholar
12.MacKay, R. A. and Ebert, L. J., in Superalloys 1984, 5th Int. Symp. on Superalloys, edited by Maurice Gell, Kortovich, C. S., Bricknell, R. H., Kent, W. B., and Radavich, J. F. (TMS-AIME, Warrendale, PA, 1984), p. 135.Google Scholar
13.MacKay, R. A. and Ebert, L. J., Metall. Trans. A 16A, 1969 (1985).CrossRefGoogle Scholar
14.Fredholm, A. and Strudel, J. L., in Superalloys 1984, edited by Gell, M., Kortovich, C. S., Bricknell, R. H., Kent, W. B., and Radavich, J. F. (TMS-AIME, Warrendale, PA, 1984), p. 211.Google Scholar
15.Nathal, M. V., MacKay, R. A., and Garlick, R. G., Mater. Sci. and Eng. 75, 195 (1985).CrossRefGoogle Scholar
16.Eshelby, J. D., Proc. Roy. Soc. A 241, 376 (1957).Google Scholar
17.Eshelby, J. D., Proc. Roy. Soc. A 252, 561 (1959).Google Scholar
18.Eshelby, J. D., in Progress in Solid Mechanics, edited by Sneddon, I. N. and Hill, R. (Interscience, New York, 1961), Vol. 2, p. 89.Google Scholar
19.Lee, J. K. and Johnson, W. C., Phys. Status Solidi (a) 46, 267 (1978).CrossRefGoogle Scholar
20.Mura, T., Micromechanics of Defects in Solids (Martinus Nijhoff Publishers, The Hague, 1982).CrossRefGoogle Scholar
21.Sankaran, R. and Laird, C., J. Mech. Phys. Sol. 24, 251 (1976).CrossRefGoogle Scholar
22.Chiu, Y. P., J. Appl. Mech. 44, 587 (1977).CrossRefGoogle Scholar
23.Lin, S. C. and Mura, T., Phys. Status Solidi (a) 15, 281 (1973).CrossRefGoogle Scholar
24.Johnson, W. C., Berkenpas, M. B., and Laughlin, D. E., Acta Metall. 36, 3149 (1988).CrossRefGoogle Scholar
25.Nathal, M. V. and MacKay, R. A., Mater. Sci. Eng. 85, 127 (1987).CrossRefGoogle Scholar
26.Nathal, M. V. and Ebert, L. J., Scripta Metall. 17, 1151 (1983).CrossRefGoogle Scholar
27.Nathal, M. V. and Ebert, L. J., Metall. Trans. A 16A, 427 (1985).CrossRefGoogle Scholar
28.Sternberg, E., Appl. Mech. Rev. 11, 1 (1958).Google Scholar
29.Robinson, K., J. Appl. Phys. 22, 1045 (1951).CrossRefGoogle Scholar
30.Sadowski, M. A. and Sternberg, E., J. Appl. Phys. 16, 149 (1949).Google Scholar
31.Goodier, J. N., Philos. Mag. 23, 1017 (1937).CrossRefGoogle Scholar
32.Asaro, R. J. and Barnett, D. M., J. Mech. Phys. Sol. 23, 77 (1975).CrossRefGoogle Scholar
33.Brown, L. M. and Clarke, D. R., Acta Metall. 23, 821 (1975).CrossRefGoogle Scholar
34.Pineau, A., Acta Metall. 24, 559 (1976).CrossRefGoogle Scholar
35.Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1986).Google Scholar
36.Lee, J. K., Barnett, D. M., and Aaronson, H., Metall. Trans. A 8A, 963 (1977).CrossRefGoogle Scholar
37.Pollock, T. M., Creep Deformation in Nickel-Base Superalloy Single Crystals, Ph.D. Thesis (Department of Materials Science and Engineering, M.I.T., 1989).Google Scholar
38.Barnett, D. M., Scripta Metall. 8, 1447 (1974).CrossRefGoogle Scholar
39.Davies, R. G. and Stoloff, N. S., Trans. TMS-AIME 233, 714 (1965).Google Scholar
40.Armstrong, P. E. and Brown, H. L., Trans. TMS-AIME 230, 962 (1964).Google Scholar
41.Oblak, J. M. and Kear, B. H., Trans. Quart. ASM 61, 519 (1968).Google Scholar
42.Decker, R. F. and Mihalisin, J. R., Trans. ASM 62, 481 (1969).Google Scholar
43.Havalda, A., Trans. ASM 62, 477 (1969).Google Scholar
44.Grose, D. A. and Ansell, G. S., Metall. Trans. A 12A, 1631 (1981).CrossRefGoogle Scholar
45.Pollock, T. M., private communication.Google Scholar
46.Hirth, J. P. and Lothe, J., Theory of Dislocations (Wiley, New York, 1982).Google Scholar
47.Kayser, F. X. and Stassis, C., Phys. Status Solidi (a) 64, 335 (1981).CrossRefGoogle Scholar
48.Ono, K. and Stern, S., Trans. AIME 245, 171 (1969).Google Scholar