Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T01:23:51.099Z Has data issue: false hasContentIssue false

Energy dissipation mechanisms in hollow metallic microlattices

Published online by Cambridge University Press:  12 September 2014

Ladan Salari-Sharif
Affiliation:
Mechanical and Aerospace Engineering Department, University of California, Irvine, USA
Tobias A. Schaedler
Affiliation:
HRL Laboratories, LLC, Malibu, California, USA
Lorenzo Valdevit*
Affiliation:
Mechanical and Aerospace Engineering Department, University of California, Irvine, USA
*
a)Address all correspondence to this author. e-mail: valdevit@uci.edu
Get access

Abstract

When properly designed at ultra-low density, hollow metallic microlattices can fully recover from compressive strains in excess of 50%, while dissipating a considerable portion of the elastic strain energy. This article investigates the physical mechanisms responsible for energy loss upon compressive cycling, and attributes the most significant contribution to a unique form of structural damping, whereby elastic local buckling of individual bars releases energy upon loading. Subsequently, a simple mechanical model is presented to capture the relationship between lattice geometry and structural damping. The model is used to optimize the microlattice geometry for maximum damping performance. The conclusions show that hollow metallic microlattices exhibit exceptionally large values of the damping figure of merit, (Young's modulus)1/3(loss coefficient)/(density), but this performance requires very low relative densities (<1%), thus limiting the amount of energy that can be dissipated.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., and Wadley, H.N.G.: Metal Foams: A Design Guide (Butterworth Heinemann, Oxford, UK, 2000).Google Scholar
Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, UK, 1999).Google Scholar
Wadley, H.N.G., Fleck, N.A., and Evans, A.G.: Fabrication and structural performance of periodic cellular metal sandwich structures. Compos. Sci. Technol. 63, 2331 (2003).CrossRefGoogle Scholar
Valdevit, L., Hutchinson, J.W., and Evans, A.G.: Structurally optimized sandwich panels with prismatic cores. Int. J. Solids Struct. 41, 5105 (2004).CrossRefGoogle Scholar
Wicks, N. and Hutchinson, J.W.: Optimal truss plates. Int. J. Solids Struct. 38, 5165 (2001).CrossRefGoogle Scholar
Valdevit, L., Wei, Z., and Mercer, C., Zok, F.W., and Evans, A.G.: Structural performance of near-optimal sandwich panels with corrugated cores. Int. J. Solids Struct. 43, 4888 (2006).CrossRefGoogle Scholar
Evans, A.G., He, M.Y., Deshpande, V.S., Hutchinson, J.W., Jacobsen, A.J., and Carter, W.B.: Concepts for enhanced energy absorption using hollow micro-lattices. Int. J. Impact Eng. 37, 947 (2010).CrossRefGoogle Scholar
Rathbun, H.J., Radford, D.D., Xue, Z., He, M.Y., Yang, J., Deshpande, V., Fleck, N.A., Hutchinson, J.W., Zok, F.W., and Evans, A.G.: Performance of metallic honeycomb-core sandwich beams under shock loading. Int. J. Solids Struct. 43, 1746 (2006).CrossRefGoogle Scholar
Hammetter, C.I., Rinaldi, R.G., and Zok, F.W.: Pyramidal lattice structures for high strength and energy absorption. J. Appl. Mech. 80, 41015 (2013).CrossRefGoogle Scholar
Schaedler, T.A., Ro, C.J., Sorensen, A.E., Eckel, Z., Yang, S.S., Carter, W.B., and Jacobsen, A.J.: Designing metallic microlattices for energy absorber applications. Adv. Eng. Mater. 16, 276 (2014).CrossRefGoogle Scholar
Valdevit, L., Jacobsen, A.J., Greer, J.R., and Carter, W.B.: Protocols for the optimal design of multi-functional cellular Structures: From hypersonics to micro-architected materials. J. Am. Ceram. Soc. 94, 15 (2011).CrossRefGoogle Scholar
Lu, T.J., Valdevit, L., and Evans, A.G.: Active cooling by metallic sandwich structures with periodic cores. Prog. Mater. Sci. 50, 789 (2005).CrossRefGoogle Scholar
Valdevit, L., Pantano, A., Stone, H.A., and Evans, A.G.: Optimal active cooling performance of metallic sandwich panels with prismatic cores. Int. J. Heat Mass Transfer 49, 3819 (2006).CrossRefGoogle Scholar
Vigliotti, A. and Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mech. Mater. 46, 57 (2012).CrossRefGoogle Scholar
Vigliotti, A. and Pasini, D.: Stiffness and strength of tridimensional periodic lattices. Compos. Appl. Mech. Eng. 229, 27 (2012).CrossRefGoogle Scholar
Arabnejad, S. and Pasini, D.: Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods. Int. J. Mech. Sci. 77, 249 (2013).CrossRefGoogle Scholar
Arabnejad Khanoki, S. and Pasini, D.: Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem. J. Mech. Behav. Biomed. Mater. 22, 65 (2013).CrossRefGoogle ScholarPubMed
Vigliotti, A., Deshpande, V., and Pasini, D.: Non linear constitutive models for lattice materials. J. Mech. Phys. Solids 64, 44 (2014).CrossRefGoogle Scholar
Maiti, S.K., Gibson, L.J., and Ashby, M.F.: Deformation and energy absorption diagrams for cellular solids. Acta Metall. 32, 1963 (1984).CrossRefGoogle Scholar
Chen, W. and Wierzbicki, T.: Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin-Walled Struct. 39, 287 (2001).CrossRefGoogle Scholar
Han, F., Zhu, Z., and Gao, J.: Compressive deformation and energy absorbing characteristic of foamed aluminum. Metall. Mater. Trans. A 29, 2497 (1998).CrossRefGoogle Scholar
Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., Valdevit, L., and Carter, W.B.: Ultralight metallic microlattices. Science 334, 962 (2011).CrossRefGoogle ScholarPubMed
Jacobsen, A.J., Carter, W.B., and Nutt, S.: Micro-scale truss structures formed from self-propagating photopolymer waveguides. Adv. Mater. 19, 3892 (2007).CrossRefGoogle Scholar
Jacobsen, A.J., Carter, W.B., and Nutt, S.: Micro-scale truss structures with three-fold and six-fold symmetry formed from self-propagating polymer waveguides. Acta Mater. 56, 2540 (2008).CrossRefGoogle Scholar
Torrents, A., Schaedler, T.A., Jacobsen, A.J., Carter, W.B., and Valdevit, L.: Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Mater. 60, 3511 (2012).CrossRefGoogle Scholar
Valdevit, L., Godfrey, S.W., Schaedler, T.A., Jacobsen, A.J., and Carter, W.B.: Compressive strength of hollow microlattices: Experimental characterization, modeling, and optimal design. J. Mater. Res. 28, 2461 (2013).CrossRefGoogle Scholar
Godfrey, S.W. and Valdevit, L.: A novel modeling platform for characterization and optimal design of micro-architected materials. AIAA Struct. Dyn. Mater. Conf. 2003, Honoulu, Hi, 2012.Google Scholar
Maloney, K.J., Roper, C.S., Jacobsen, A.J., Carter, W.B., Valdevit, L., and Schaedler, T.A.: Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery. APL Mater. 1, 22106 (2013).CrossRefGoogle Scholar
Cao, A., Dickrell, P.L., Sawyer, W.G., Ghasemi-Nejhad, M.N., and Ajayan, P.M.: Super-compressible foamlike carbon nanotube films. Science 310, 1307 (2005).CrossRefGoogle ScholarPubMed
Yin, J., Li, X., Zhou, J., and Guo, W.: Ultralight three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano Lett. 13, 3232 (2013).CrossRefGoogle ScholarPubMed
Fraternali, F., Blesgen, T., Amendola, A., and Daraio, C.: Multiscale mass-spring models of carbon nanotube foams. J. Mech. Phys. Solids 59, 89 (2011).CrossRefGoogle Scholar
Wong, C.R. and Graesser, E.J.: The relationship of traditional damping measures for materials with high damping capacity: A review. ASTM 316 (1992).Google Scholar
Lazan, B.L.: Damping of Materials and Members in Structural Mechanics (Pergamon Press Ltd., New York, 1968).Google Scholar
Salari-Sharif, L. and Valdevit, L.: Accurate stiffness measurement of ultralight hollow metallic microlattices by laser vibrometry. J. Exp. Mech. (2014). DOI: 10.1007/s11340-014-9917-8.CrossRefGoogle Scholar
Meirovitch, L.: Fundamentals of Vibrations (Waveland Press, 2010).Google Scholar
Standard Test Method for Measuring Vibration-Damping Properties of Materials (ASTM, 2010).Google Scholar
Lohmiller, J., Eberl, C., Schwaiger, R., Kraft, O., and Balk, T.J.: Mechanical spectroscopy of nanocrystalline nickel near room temperature. Scr. Mater. 59, 467 (2008).CrossRefGoogle Scholar
Lakes, R.S., Lee, T., Bersie, A., and Wang, Y.C.: Extreme damping in composite materials with negative-stiffness inclusions. Nature 410, 565 (2001).CrossRefGoogle ScholarPubMed
Kalathur, H. and Lakes, R.S.: Column dampers with negative stiffness: High damping at small amplitude. Smart Mater. Struct. 22, 84013 (2013).CrossRefGoogle Scholar
Benichou, I. and Givli, S.: Structures undergoing discrete phase transformation. J. Mech. Phys. Solids 61, 94 (2013).CrossRefGoogle Scholar
Calladine, C.R.: Theory of Shell Structures (Cambridge University Press, Cambridge, UK, 1983).CrossRefGoogle Scholar
Teng, J.G. and Rotter, J.M.: Buckling of Thin Metal Shells (CRC Press, Boca Raton, FL, 2006).CrossRefGoogle Scholar
Dong, L. and Lakes, R.: Advanced damper with high stiffness and high hysteresis damping based on negative structural stiffness. Int. J. Solids Struct. 50, 2416 (2013).CrossRefGoogle Scholar