Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:27:17.376Z Has data issue: false hasContentIssue false

Enhanced nucleation density of chemical vapor deposition diamonds by using interlayer

Published online by Cambridge University Press:  31 January 2011

J. J. Lee
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science & Technology, San 31, Hoyja Dong, Pohang, Kyungbuk 790-784, Republic of Korea
W. S. Yang
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science & Technology, San 31, Hoyja Dong, Pohang, Kyungbuk 790-784, Republic of Korea
Jung Ho Je*
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science & Technology, San 31, Hoyja Dong, Pohang, Kyungbuk 790-784, Republic of Korea
*
b)Corresponding author.
Get access

Abstract

Effects of interlayers on diamond nucleation were investigated for the Si substrates. Interlayers were deposited on the diamond-abraded Si substrates by rf sputtering prior to diamond growth using microwave plasma chemical vapor deposition (CVD). Compared with 1 × 108/cm2 for the just abraded substrate, the nucleation density was greatly enhanced to 1 ∼ 2 × 109/cm2 by 50 nm thick interlayer, irrespective of the kind of interlayer material used in this study (Si, Mo, Ti, Pt, Ag, TiN, or SiO2). As the thickness of the Si interlayer increased from 20 to 500 nm, the nucleation density reached a maximum value, 3 × 109/cm2 at 100 nm. However, the growth rate was monotonically reduced from ∼300 nm/h to ∼100 nm/h. For the 700 nm thick Si interlayer, no diamond growth was observed. These results indicate that there is an optimum interlayer thickness around 100 nm for the higher nucleation density. The role of the interlayer in enhancing the nucleation density is believed to protect the nucleation sites generated by the diamond abrasion, otherwise they could be considerably etched away by atomic hydrogen during the initial diamond deposition.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yarbrough, W. A. and Messier, R., Science 247, 688 (1990).CrossRefGoogle Scholar
2.Stoner, B. R., Ma, G-H., Wolter, S. D., and Glass, J. T., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
3.Okubo, T., Nakata, S., Nagamoto, H., Ihara, M., and Komiyama, H., Jpn. J. Appl. Phys. 32, L1767 (1993).CrossRefGoogle Scholar
4.Setaka, N. and Hyomen, , Surface 22, 110 (1984).Google Scholar
5.Mitsuda, Y., Kojima, Y., Yoshida, T., and Akashi, K., J. Mater. Sci. 22, 1557 (1987).CrossRefGoogle Scholar
6.Bachmann, P. K., Drawl, W., Knight, D., Weimer, R., and Messier, R. F., in Diamond and Diamond-Like Materials Synthesis, edited by Johnson, G. H., Badzian, A. R., and Geis, M. W. (Mater. Res. Soc., Extended Abstracts, EA-15, Pittsburgh, PA, 1988), p. 99.Google Scholar
7.Kirkpatrick, A. R., Ward, B. W., and Economou, N. P., J. Vac. Sci. Technol. B 7, 1947 (1989).CrossRefGoogle Scholar
8.Yugo, S., Kimura, T., and Kanai, H., in Science and Technology of New Diamond, edited by Saito, S., Fukunaga, O., and Toshikawa, M. (Terra Scientific Publishing Company, Tokyo, 1990), p. 119.Google Scholar
9.Ravi, K. V., Koch, C. A., Hu, H. S., and Joshi, A., J. Mater. Res. 5, 2356 (1990).CrossRefGoogle Scholar
10.Hartnett, T., Miller, R., Montanari, D., Willingham, C., and Tustison, R., J. Vac. Sci. Technol. A 8, 2129 (1990).CrossRefGoogle Scholar
11.Rudder, R. A., Hudson, G. C., Hendry, R. C., Thomas, R. E., Posthill, J. B., and Markunas, R. J., in Proceedings of the First International Conference on the Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Feldman, A. (Elsevier, New York, 1991), p. 395.Google Scholar
12.Meilunas, R. J., Chang, R. P. H., Liu, S., and Kappes, M. M., Appl. Phys. Lett. 59, 3461 (1991).CrossRefGoogle Scholar
13.Yehoda, J. E., Fuentes, R. I., Tsang, J. C., Whitehair, S. J., Guarnieri, C. R., and Cuomo, J. J., Appl. Phys. Lett. 60, 2865 (1992).CrossRefGoogle Scholar
14.Godbole, V. P. and Narayan, J., J. Appl. Phys. 71, 4944 (1992).CrossRefGoogle Scholar
15.Iijima, S., Aikawa, Y., and Baba, K., Appl. Phys. Lett. 57, 2646 (1990).CrossRefGoogle Scholar
16.Iijima, S., Aikawa, Y., and Baba, K., J. Mater. Res. 6, 1491 (1991).CrossRefGoogle Scholar
17.Ihara, M., Komiyama, H., and Okubo, T., Appl. Phys. Lett. 65, 1192 (1994).CrossRefGoogle Scholar
18.Yang, W. S. and Je, J. H., J. Mater. Res. 11, 1787 (1996).CrossRefGoogle Scholar
19.Okubo, T., Ikari, S., Kusakabe, K., and Morooka, S., J. Mater. Sci. Lett. 11, 460 (1992).CrossRefGoogle Scholar
20.Ascarelli, P. and Fontana, S., Appl. Surf. Sci. 64, 307 (1993).CrossRefGoogle Scholar
21.Tang, C. and Ingram, D. C., J. Appl. Phys. 78, 5745 (1995).CrossRefGoogle Scholar
22.Dubray, J. J., Pantano, C. G., Meloncelli, M., and Bertran, E., J. Vac. Sci. Technol. A 9, 3012 (1991).CrossRefGoogle Scholar
23.Morrishi, A. A. and Pehrsson, P. E., Appl. Phys. Lett. 59, 417 (1991).CrossRefGoogle Scholar
24.Barnes, P. N. and Wu, R. L. C., Appl. Phys. Lett. 62, 37 (1993).CrossRefGoogle Scholar
25.Je, J. H. and Lee, G. Y., J. Mater. Sci. 27, 6324 (1992).CrossRefGoogle Scholar
26.Williams, B. E. and Glass, J. T., J. Mater. Res. 4, 373 (1989).CrossRefGoogle Scholar
27.Meilunas, R., Wong, M. S., Sheng, K. C., Chang, R. P., and Van Duyne, R. P., Appl. Phys. Lett. 54, 2204 (1990).CrossRefGoogle Scholar
28.Shih, H. C., Sung, C. P., Tang, Y. S., and Chen, J. G., Surf. Coat. Technol. 52, 105 (1992).CrossRefGoogle Scholar
29.Belton, D. N. and Schmieg, S. J., Thin Solid Films 212, 150 (1992).CrossRefGoogle Scholar
30.Kweon, D. W. and Lee, J. Y., J. Appl. Phys. 6, 4272 (1990).CrossRefGoogle Scholar
31.Park, S. S. and Lee, J. Y., J. Mater. Sci. 28, 1799 (1993).CrossRefGoogle Scholar
32.Inoue, T., Tachibana, H., Kumagai, K., Miyata, K., Nishimura, K., Kobashi, K., and Nakaue, A., J. Appl. Phys. 67, 7329 (1990).CrossRefGoogle Scholar