Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T07:44:34.731Z Has data issue: false hasContentIssue false

Enhanced solid-state reaction kinetics of shock-compressed titanium and carbon powder mixtures

Published online by Cambridge University Press:  31 January 2011

Jong-Heon Lee
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332–0245
Naresh N. Thadhani
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332–0245
Get access

Abstract

The effect of shock compression on the solid-state chemical reactivity of titanium and carbon powder mixtures was investigated with the objective of forming net-shaped TiC ceramics with a fine-grain microstructure. The combination of defect states and intimate interparticle contacts introduced during shock compression results in significant enhancement of the otherwise sluggish solid-state diffusion of Ti and C through the TiCx boundary layer. The apparent activation energy for TiCx formation was determined using solid-state reaction kinetics models, and was found to be reduced by four-to-six times that of diffusion of Ti into TiCx and two-to-three times that of diffusion of C in TiCx. As a result, net-shaped sections of shock-densified compacts (˜85% dense) were reaction synthesized via solid-state diffusion, producing microstructures with grain size <6 μm and microhardness of ˜2000 kg/mm2, in contrast to statically pressed powder compacts which reacted by a combustion process resulting in a highly porous product.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3 (7, 8), 277365 (1989).CrossRefGoogle Scholar
2.Holt, J. B. and Munir, Z. A., J. Mater. Sci. 21, 251259 (1986).CrossRefGoogle Scholar
3.Merzhanov, A. G., in Combustion and Plasma Synthesis of High-Temperature Materials, edited by Munir, Z. A. and Holt, J. B. (VCH Publishers, New York, 1990), p. 1.Google Scholar
4.Merzhanov, A. G., Archiv. Combust. 1, 23 (1981).Google Scholar
5.Chiang, Y-M.Haggerty, J. S., Messner, R. P., and Demetry, C., Am. Ceram. Soc. Bull. 68 (2), 420428 (1989).Google Scholar
6.Newkirk, M. S., Lesher, H. D., White, D. R., Kennedy, C. R., Urquhart, A. W., and Claar, T. D., Ceram. Eng. Sci. Proc. 8 (7–8), 879 (1987).CrossRefGoogle Scholar
7.Gesing, A. J., presented at the International Symposium on Advanced Structural Materials, 27th Annual Conference of Metallurgists (CIM), Montreal, Canada, (August, 1988) (Paper No. 38.4).Google Scholar
8.Hucke, E. E., U.S. Patent No. 3, 235, 346, Feb. 15, 1966.Google Scholar
9.Linse, V., Chairman, , National Materials Advisory Board (NMAB) Report No. 394, National Academy Press, Washington DC (1983).Google Scholar
10.Gourdin, W. H., Prog. Mater. Sci. 30, 39 (1986).CrossRefGoogle Scholar
11.Thadhani, N. N., Adv. Mater. Manufacturing Processes 4 (4) (1988).Google Scholar
12.Yi, Y. and Moore, J. J., J. Mater. Sci. 25, 11591168 (1990).CrossRefGoogle Scholar
13.Hlavacek, V., Am. Ceram. Soc. Bull. 70 (2), 240243 (1991).Google Scholar
14.Dunmead, S. D., Readey, D. W., Semler, C. E., and Holt, J. B., J. Am. Ceram. Soc. 72 (12), 2318 (1989).CrossRefGoogle Scholar
15.Kottke, T., Kecskes, L. J., and Niiler, A., J. Am. Ceram. Soc. 73 (5), 1274 (1990).Google Scholar
16.Rice, R. W. and McDonough, W. J., J. Am. Ceram. Soc. 68 (5), C-122C-123 (1985).CrossRefGoogle Scholar
17.Niiler, A., Kecskes, L. J., Kottke, T., Netherwood, P. Jr., and Benck, R. F., Ballistics Research Laboratory Report No. BRL-TR-2951, Aberdeen Proving Ground, MD, Dec. 1988, p. 11.Google Scholar
18.Rabin, B. H., Korth, G. E., and Williamson, R. L., J. Am. Ceram. Soc. 73 (7), 21562157 (1990).CrossRefGoogle Scholar
19.Grebe, H. A., Advani, A., Thadhani, N. N., and Kottke, T., Metall. Trans. 23A, 23652372 (1992).CrossRefGoogle Scholar
20.Meyer, L. W., LaSalvia, J. C., and Meyers, M. A., J. Am. Ceram. Soc. 75, 592602 (1992).Google Scholar
21.Vecchio, K. S., LaSalvia, J. C., Meyers, M. A., and T, G.. Gray III, Metall. Trans. 23A, 87 (1992).CrossRefGoogle Scholar
22.Dremin, A. N and Breusov, O. N., Russ. Chem. Rev. 37 (5), 392402 (1968).CrossRefGoogle Scholar
23.Duvall, G., Chairman, National Materials Advisory Board Report No. 414, National Academy Press, Washington DC (1984).Google Scholar
24.Graham, R. A., Morosin, B., Venturini, E. L., and Carr, M. J., Annu. Rev. Mater. Sci. 16, 315 (1986).CrossRefGoogle Scholar
25.Meyers, N. N., Prog. Mater. Sci. 37 (2), 117226 (1993).Google Scholar
26.Meyers, M. A., Yu, L. H., and Vecchio, K. S., Acta Met. et. Mater. 42 (3), 701714 (1994); 42 (3), 715–729 (1994).CrossRefGoogle Scholar
27.Graham, R. A and Thadhani, N. N., in Shock Waves in Materials Science, edited by Sawaoka, A. B. (Springer-Verlag, Berlin, 1993), p. 35.CrossRefGoogle Scholar
28.Hammetter, W. F., Graham, R. A., Morosin, B., and Horie, Y., in Shock Waves in Condensed Matter, edited by Schmidt, S. C. and Homes, N. C. (Elsevier Science Publishers B.V., New York, 1988), p. 431.Google Scholar
29.Dunbar, E., Thadhani, N. N., and Graham, R. A., J. Mater. Sci. 28, 2903 (1993).CrossRefGoogle Scholar
30.Bergmann, O. R. and Barrington, J., J. Am. Ceram. Soc. 49 (9), 502507 (1966).CrossRefGoogle Scholar
31.Beauchamp, E. K., in High-Pressure Explosives Processing of Ceramics, edited by Graham, R. A. and Sawaoka, A. B. (Trans. Tech. Publ., Zürich, 1987), p. 139.Google Scholar
32.Thadhani, N. N., Mutz, A. H., and Vreeland, T., Jr., Acta Metall. 37 (3), 897 (1989).CrossRefGoogle Scholar
33.Joshi, V. S., Thadhani, N. N., and Graham, R. A., in High-Pressure Science and Technology–1993, edited by Schmidt, S. C., Shaner, J. W., Samara, G. A., and Ross, M. (American Institute of Physics Conference Proc. 309, Part II, 1994), pp. 12991302.Google Scholar
34.Fischmeister, H. F. and Arzt, E., Powder Metall. 26, 82 (1983).CrossRefGoogle Scholar
35.Lee, J-H., Thadhani, N. N., and Grebe, H. A., Metall. Mat. Trans. A 27A, 1749 (1996).CrossRefGoogle Scholar
36.Gurney, R., Report No. 405, Ballistic Research Laboratory, Aberdeen, MD, September, 1943, AII-36218.Google Scholar
37.Underwood, E. E., Quantitative Stereology Addison-Wesley Publishing Company, Reading MA, 1970).Google Scholar
38.Williamson, G. K and Hall, W. H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
39.Ehrlich, P., Anorg, Z.. Allg. Chem. 259, 1 (1949).Google Scholar
40.Toth, L. E., Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
41.Williamson, G. K and Smallman, R. E., Philos. Mag. 1, 3436 (1956).CrossRefGoogle Scholar
42.Jander, W., anorg, Z.. u. allgem. Chem. 163, 130 (1927).Google Scholar
43.Carter, R. E., J. Chem. Phys. 34 (6), 20102015 (1961); 35, 1137–1138 (1961).CrossRefGoogle Scholar
44.Sarian, S., J. Appl. Phys. 39 (7), 33053310 (1968).CrossRefGoogle Scholar
45.Sarian, S., J. Appl. Phys. 39 (11), 50365041 (1968).CrossRefGoogle Scholar
46.Sarian, S., J. Appl. Phys. 40 (9), 35153520 (1969).CrossRefGoogle Scholar