Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T07:36:16.026Z Has data issue: false hasContentIssue false

Enhanced tensile ductility in an electrodeposited nanocrystalline copper

Published online by Cambridge University Press:  31 January 2011

Guoyong Wang
Affiliation:
Key Laboratory of Automobile Materials, College of Materials Science and Engineering, Jilin University, Changchun 130025, People’s Republic of China
Zhonghao Jiang
Affiliation:
Key Laboratory of Automobile Materials, College of Materials Science and Engineering, Jilin University, Changchun 130025, People’s Republic of China
Hanzhuo Zhang
Affiliation:
Key Laboratory of Automobile Materials, College of Materials Science and Engineering, Jilin University, Changchun 130025, People’s Republic of China
Jianshe Lian*
Affiliation:
Key Laboratory of Automobile Materials, College of Materials Science and Engineering, Jilin University, Changchun 130025, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: lianjs@jlu.edu.cn
Get access

Abstract

A fully dense nanocrystalline (nc) Cu with mean grain size of 72 nm and a broad grain size distribution was synthesized by electrodeposition. Uniaxial tensile tests were done at different strain rates and room temperature. A very high strength of 1.04 G was obtained at strain rate of 0.1 s−1. The nearly perfect plasticity with a large strain of close to 20% was displayed at specific low strain rates of 4 × 10−5 to 10−4 s−1. With increasing strain rate, the nearly perfect plasticity disappeared. Strain rate sensitivity and activation volume of the nc Cu were estimated from the flow stress at a fixed strain of 1% and a strain rate change (jump) test. It was deduced from the high strain rate sensitivity exponent of 0.08 and small activation volume of 12b3 that both dislocation and grain boundary activities would take place in this nc Cu, which explained the nearly perfect plasticity observed in the tensile test.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Herzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials 3rd ed.John Wiley and Sons New York 1989 392Google Scholar
2Youssef, M.K., Scattergood, R.O., Murty, K.L., Horton, J.A., Koch, C.C.: Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87, 091904 2005CrossRefGoogle Scholar
3Gu, C., Lian, J., Jiang, Q., Jiang, Z.: Ductile-brittle-ductile transition in an electrodeposited 13 nanometer grain sized Ni–8.6 wt% Co alloy. Mater. Sci. Eng., A 459, 75 2007Google Scholar
4Koch, C.C.: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49, 657 2003Google Scholar
5Ma, E.: Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49, 663 2003CrossRefGoogle Scholar
6Wang, Y.M., Wang, K., Pan, D., Lu, K., Hemker, K.J., Ma, E.: Microsample tensile testing of nanocrystalline copper. Scr. Mater. 48, 1581 2003CrossRefGoogle Scholar
7Wang, Y., Chen, M., Zhou, F., Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 2002Google Scholar
8Zhang, H., Jiang, Z., Lian, J., Jiang, Q.: Strain rate dependence of tensile ductility in an electrodeposited Cu with ultrafine grain size. Mater. Sci. Eng., A 479, 136 2008Google Scholar
9Shen, X., Lian, J., Jiang, Z., Jiang, Q.: High strength and high ductility of electrodeposited nanocrystalline Ni with a broad grain size distribution. Mater. Sci. Eng., A 487, 410 2008Google Scholar
10Jiang, Z., Liu, X., Li, G., Jiang, Q., Lian, J.: Strain rate sensitivity of a nanocrystalline Cu synthesized by electric brush plating. Appl. Phys. Lett. 88, 143115 2006Google Scholar
11Chen, J., Lu, L., Lu, K.: Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54, 1913 2006CrossRefGoogle Scholar
12Guduru, R.K., Murty, K. Linga, Youssef, M.K., Scattergood, R.O., Koch, C.C.: Mechanical behavior of nanocrystalline copper. Mater. Sci. Eng., A 463, 14 2007Google Scholar
13Dao, M., Lu, L., Asaro, R.J., De Hosson, J.T.M., Ma, E.: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 2007Google Scholar
14Klug, H.P., Alexander, L.E.: X-ray Diffraction Procedures 2nd ed.Wiley New York 1974 505Google Scholar
15Wei, H., Hibbard, G.D., Palumbo, G., Erb, U.: The effect of gauge volume on the tensile properties of nanocrystalline electrodeposits. Scr. Mater. 57, 996 2007Google Scholar
16Torre, F. Dalla, Van Swygenhoven, H., Victoria, M.: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50, 3957 2002Google Scholar
17Gu, C., Lian, J., Jiang, Z., Jiang, Q.: Enhanced tensile ductility in an electrodeposited nanocrystalline Ni. Scr. Mater. 54, 579 2006Google Scholar
18Sabirov, I., Estrin, Y., Barnett, M.R., Timokhina, I., Hodgson, P.D.: Enhanced tensile ductility of an ultra-fine-grained aluminum alloy. Scr. Mater. 58, 163 2008CrossRefGoogle Scholar
19Cheng, S., Ma, E., Wang, Y.M., Kecskes, L.J., Youssef, K.M., Koch, C.C., Trociewitz, U.P., Han, K.: Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater. 53, 1521 2005Google Scholar
20Asaro, R.J., Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369 2005Google Scholar
21Lu, L., Schwarger, R., Shan, Z.W., Dao, M., Lu, K., Suresh, S.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 2005Google Scholar
22Wei, Q., Cheng, S., Ramesh, K.T., Ma, E.: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng., A 381, 71 2004Google Scholar
23Lian, J., Gu, C., Jing, Q., Jiang, Z.: Strain rate sensitivity of face-centered-cubic nanocrystalline materials based on dislocation deformation. J. Appl. Phys. 99, 076103 2006Google Scholar
24Ma, E.: Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58, 49 2006CrossRefGoogle Scholar
25Wang, Y.M., Hamza, A.V., Ma, E.: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 2006CrossRefGoogle Scholar
26Wang, Y.M., Ma, E.: Temperature and strain rate effects on the strength and ductility of nanostructured copper. Appl. Phys. Lett. 83, 3165 2003Google Scholar
27Wang, Y.M., Ma, E.: Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52, 1699 2004Google Scholar
28Li, H., Ebrahimi, F.: Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17, 1969 2005Google Scholar
29Li, H., Ebrahimi, F.: Tensile behavior of a nanocrystalline Ni-Fe alloy. Acta Mater. 54, 2877 2006Google Scholar
30Gu, C.D., Lian, J.S., Jiang, Q., Zheng, W.T.: Experimental and modeling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni. J. Phys. D: Appl. Phys. 40, 7440 2007CrossRefGoogle Scholar
31Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A., Wang, P.: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387 2003CrossRefGoogle Scholar
32Ma, E., Wang, Y.M., Lu, Q.H., Sui, M.L., Lu, L., Lu, K.: Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper. Appl. Phys. Lett. 85, 4932 2004CrossRefGoogle Scholar
33Chanmpaion, Y., Langlois, C., Guérin-Mailly, S., Langlois, P., Bonnentien, J-L., Hÿtch, M.J.: Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300, 310 2003CrossRefGoogle Scholar
34Wang, Y.M., Ma, E.: On the origin of ultrahigh cryogenic strength of nanocrystalline metals. Appl. Phys. Lett. 85, 2750 2004Google Scholar
35Brandl, C., Bitzek, E., Derlet, P.M., Van Swygenhoven, H.: Slip transfer through a general high angle grain boundary in nanocrystalline aluminum. Appl. Phys. Lett. 91, 111914 2007Google Scholar
36Ovid’ko, I.A.: Review on the fracture processes in nanocrystalline materials. J. Mater. Sci. 42, 1694 2007Google Scholar