Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T01:08:13.371Z Has data issue: false hasContentIssue false

Enhancement of green photoluminescence from ZnO:Pr powders

Published online by Cambridge University Press:  01 June 2006

Yoshihiro Inoue*
Affiliation:
Department of Materials Science and Engineering, National Defense Academy, Yokosuka 239-8686, Japan
Masaki Okamoto
Affiliation:
Department of Materials Science and Engineering, National Defense Academy, Yokosuka 239-8686, Japan
Jun Morimoto
Affiliation:
Department of Materials Science and Engineering, National Defense Academy, Yokosuka 239-8686, Japan
*
a) Address all correspondence to this author. e-mail: f05005@nda.ac.jp
Get access

Abstract

Pr-doped ZnO phosphor powders were prepared by dry reaction within evacuated sealed silica glass tube. Pr2O3 and Pr6O11 were used as additives. Pr concentrations were 0.5, 1, 3, and 5 mol%, and the sintering temperatures were 600, 800, and 1000 °C, respectively. Photoluminescence (PL) and PL excitation (PLE) spectra were measured to study luminescent properties of samples. Some samples showed the enhancement of green emission. This emission is related to native defects in ZnO. Based on the results of PL and PLE, the origin of the enhancement was discussed in view of native defects in ZnO and the defect-related complex in ZnO varistor ceramics. The possible origin is the increase of native defects such as VZn, OZn, and the complex in the vicinity of grain boundaries and ZnO matrix near the surface of grains. The increase of native defects and the complex are probably due to the existence of the Pr3+-ions with binding to native defects, which form the complex by Coulombic potential.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Miyamoto, S.: The origin of the ultraviolet emission in ZnO phosphors. Jpn. J. Appl. Phys. 17, 1129 (1978).Google Scholar
2.Shimizu, A., Kanbara, M., Hada, M., Kasuga, M.: ZnO green light emitting diode. Jpn. J. Appl. Phys. 17, 1435 (1978).Google Scholar
3.Look, D.C.: Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 80, 383 (2001).CrossRefGoogle Scholar
4.Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W.: Recent advances in processing of ZnO. J. Vac. Sci. Technol. B 22, 932 (2004).Google Scholar
5.Hirai, T., Harada, Y., Hashimoto, S., Ohno, N., Itoh, T.: Luminescence of bound excitions in ZnO:Zn phosphor powders. J. Lumin. 113, 115 (2005).Google Scholar
6.Vanheusden, K., Warren, W.L., Seager, C.H., Tallant, D.R., Voigt, J.A.: Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996).CrossRefGoogle Scholar
7.Lin, B., Fu, Z., Jia, Y.: Green luminescence center in undoped zinc oxide films deposited on silicon substrate. Appl. Phys. Lett. 79, 943 (2001).CrossRefGoogle Scholar
8.Studenikin, S.A., Cocivera, M.: Time-resolved luminescence and photoconductivity of polycrystalline ZnO films. J. Appl. Phys. 91, 5060 (2002).Google Scholar
9.Xu, P.S., Sun, Y.M., Shi, C.S., Xu, F.Q., Pan, H.B.: The electronic structure and spectral properties of ZnO and its defects. Nucl. Instrum. Methods Phys. Res. B. 199, 286 (2003).CrossRefGoogle Scholar
10.Zou, Y., Wang, Y., Chen, Z., Wang, J., Li, Y.: Enhanced green photoluminescence from ZnO films prepared by TFA-MOD method. Mater. Lett. 59, 3042 (2005).Google Scholar
11.Hong, R., Shao, J., He, H., Fan, Z.: ZnO:Zn phosphor thin films prepared by face-to-face annealing. J. Cryst. Growth 284, 347 (2005).CrossRefGoogle Scholar
12.Oba, F., Adachi, H., Tanaka, I.: Energetics and electronic structure of point defects associated with oxygen excess at a tilt boundary of ZnO. J. Mater. Res. 15, 2167 (2000).Google Scholar
13.Oba, F., Nishitani, S.R., Isotani, S., Adachi, H., Tanaka, I.: Energetics of native defects in ZnO. J. Appl. Phys. 90, 824 (2001).Google Scholar
14.Oba, F., Yamamoto, T., Ikuhara, Y., Tanaka, I., Adachi, H.: First-principles calculation of Co impurities and native defects in ZnO. Mater. Trans. 43, 1439 (2002).CrossRefGoogle Scholar
15.Kohan, A.F., Ceder, G., Morgan, D., Van Walle, C.G. de: First-principles study of native point defects in ZnO. Phys. Rev. B 61, 15019 (2000).Google Scholar
16.Mukae, K., Tsuda, K., Nagasawa, I.: Non-ohmic properties of ZnO-rare earth metal oxide-Co3O4 ceramics. Jpn. J. Appl. Phys. 16, 1361 (1977).CrossRefGoogle Scholar
17.Clarke, D.R.: Varistor ceramic. J. Am. Ceram. Soc. 82, 485 (1999).CrossRefGoogle Scholar
18.Hayashi, Y., Narahara, H., Uchida, T., Noguchi, T., Ibuki, S.: Photoluminescence of Eu-doped ZnO phosphor. Jpn. J. Appl. Phys. 34, 1878 (1995).Google Scholar
19.Jia, W., Monge, K., Fernandez, F.: Energy transfer from the host to Eu3+ in ZnO. Opt. Mater. 23, 27 (2003).CrossRefGoogle Scholar
20.Yang, C-C., Cheng, S-Y., Lee, H-Y., Chen, S-Y.: Effects of phase transformation on photoluminescence behavior of ZnO:Eu prepared in different solvents. Ceram. Int. 32, 37 (2006).Google Scholar
21.Panatarani, C., Lenggoro, I.W., Okuyama, K.: The crystallinity and the photoluminescent properties of spray pyrolized ZnO phosphor containing Eu2+ and Eu3+ ions. J. Phys. Chem. Solids 65, 1843 (2004).Google Scholar
22.Inoue, Y., Miyauchi, Y., Kimura, A., Kawahara, T., Okamoto, Y., Morimoto, J.: Photoacoustic spectra from Co doped ZnO with different grain or cluster sizes. Jpn. J. Appl. Phys. 43, 2936 (2004).Google Scholar
23.Inoue, Y., Okamoto, M., Kawahara, T., Morimoto, J.: Photoacoustic spectra on Pr doped ZnO powders. J. Alloy. Compd. 408–412, 1234 (2006).Google Scholar
24.Burnham, D.A., Eyring, L.: Phase transformations in the praseodymium oxide-oxygen system: High-temperature x-ray diffraction studies. J. Phys. Chem. 72, 4415 (1968).CrossRefGoogle Scholar
25.Kang, Z.C., Eyring, L.: A composition and structual rationalization of the higher oxides of Ce, Pr, and Tb. J. Alloys Compd. 249, 206 (1997).Google Scholar
26.Diallo, P.T., Boutinaud, P., Mahiou, R.: Anti-Stokes luminescence and site selectivity in La2Ti2O7:Pr3+. J. Alloys Compd. 341, 139 (2002).Google Scholar
27.Dzik, G.D., Lisiecki, R., Lukasiewicz, T., Romanowski, W.R.: Spectroscopic properties of praseodymium-doped YVO4 crystal grown by the Czochralski technique. J. Alloys Compd. 380, 107 (2004).Google Scholar
28.Gryk, W., Kuklinski, B., Grinberg, M., Malinowsky, M.: High pressure spectroscopy of Pr3+ in LiNbO3. J. Alloys Compd. 380, 230 (2004).Google Scholar
29.Koepke, Cz., Wisniewski, K., Dyl, D., Grinberg, M., Malinowsky, M.: Evidence for existence of the trapped exiton states in Pr3+-doped LiNbO3 crystal. Opt. Mater. 28, 137 (2006).Google Scholar
30.Lee, Y-S., Liao, K-S., Tseng, T-Y.: Microstructure and crystal phase of praseodymium oxides in zinc oxide varistor ceramics. J. Am. Ceram. Soc. 79, 2379 (1996).Google Scholar
31.Chun, S-Y., Wakiya, N., Funakubo, H., Shinozaki, K., Mizutani, N.: Phase diagram and microstructure in the ZnO–Pr2O3. J. Am. Ceram. Soc. 80, 995 (1997).Google Scholar
32.Oba, F., Sato, Y., Yamamoto, T., Ikuhara, Y., Sakuma, T.: Current-voltage characteristics of cobalt-doped inversion boundaries in zinc oxide bicrystals. J. Am. Ceram. Soc. 86, 1616 (2003).Google Scholar
33.Sato, Y., Oba, F., Yodogawa, M., Yamamoto, T., Ikuhara, Y.: Grain boundary dependency of nonliner current-voltage characteristic in Pr and Co doped ZnO bicrystals. J. Appl. Phys. 95, 1258 (2004).Google Scholar
34.Sato, Y., Mizoguchi, T., Oba, F., Yodogawa, M., Yamamoto, T., Ikuhara, Y.: Identification of native defects around grain boudary in Pr-doped ZnO bicrystal using electron energy loss spectroscopy and first-principles calculations. Appl. Phys. Lett. 84, 5311 (2004).Google Scholar
35.Ohashi, N., Mitarai, S., Fukunaga, O., Tanaka, J.: Magnetization and electric properties of Pr-doped ZnO. J. Electroceram. 4S1, 61 (1999).Google Scholar
36.Wakiya, N., Chun, S-Y., Shinozuka, K., Mizutani, N.: Redox reaction of praseodymium oxide in the ZnO sintered ceramics. J. Solid State Chem. 149, 349 (2000).Google Scholar
37.Prokofiev, A.V., Shelykh, A.I., Melekh, B.T.: Periodicity in the band gap variation of Ln2X3(X = O, S, Se) in the lanthanide series. J. Alloys Compd. 242, 41 (1996).Google Scholar