Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-02T19:53:39.353Z Has data issue: false hasContentIssue false

Enthalpies of formation of LaBO3 perovskites (B = Al, Ga, Sc, and In)

Published online by Cambridge University Press:  03 March 2011

Jihong Cheng
Affiliation:
Thermochemistry Facility and NEAT ORU, University of California at Davis, One Shields Avenue, Davis, California 95616
Alexandra Navrotsky*
Affiliation:
Thermochemistry Facility and NEAT ORU, University of California at Davis, One Shields Avenue, Davis, California 95616
*
a)Address all correspondence to this author. e-mail: anavrotsky@ucdavis.edu
Get access

Abstract

Enthalpies of formation from constituent oxides and elements at 298 K were determined by high-temperature oxide melt solution calorimetry for a group of technologically important perovskites LaBO3 (B = La, Ga, Sc, and In). Enthalpies of formation from oxides of LaAlO3 and LaGaO3 are −69.61 ± 3.23 kJ/mol and −52.39 ± 1.99 kJ/mol, respectively. The data were consistent with literature values obtained using other methods. The enthalpies of formation of LaScO3 and LaInO3 from oxides were reported for the first time as −38.64 ± 2.30 kJ/mol and −23.99 ± 2.31 kJ/mol, respectively. As seen for other perovskites, as the tolerance factor deviates more from unity (in the order Al, Ga, Sc, In), the enthalpy of formation from oxides becomes less exothermic, indicating a less stable structure with respect to the constituent oxides.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ishihara, T., Matsuda, T., and Takita, Y., J. Am. Chem. Soc. 116, 3801 (1994).CrossRefGoogle Scholar
2.Huang, K., Tichy, R.S. and Goodenough, J.B., J. Am. Ceram. Soc. 81, 2565 (1998).CrossRefGoogle Scholar
3.Anderson, P.S., Marques, F.M.B., Sinclair, D.C., and West, A.R., Solid State Ionics 118, 229 (1999).CrossRefGoogle Scholar
4.Lybye, D., Poulsen, F.W., and Mogensen, M., Solid State Ionics 128, 91 (2000).CrossRefGoogle Scholar
5.Park, J.Y. and Choi, G.M., Solid State Ionics 154–155, 535 (2002).CrossRefGoogle Scholar
6.Nomura, K. and Tanase, S., Solid State Ionics 98, 229 (1997).CrossRefGoogle Scholar
7.Fujii, H., Katayama, Y., Shimura, T., and Iwahara, H., J. Electroceram. 2, 119 (1998).CrossRefGoogle Scholar
8.Lybye, D. and Bonanos, N., Solid State Ionics 125, 339 (1999).CrossRefGoogle Scholar
9.Kim, S., Lee, K.H., and Lee, H.L., Solid State Ionics 144, 109 (2001).CrossRefGoogle Scholar
10.He, H., Huang, X., and Chen, L., Solid State Ionics 130, 183 (2000).CrossRefGoogle Scholar
11.He, H., Huang, X., and Chen, L., Electrochim. Acta 46, 2871 (2001).CrossRefGoogle Scholar
12.Navrotsky, A., Phys. Chem. Minerals 2, 89 (1977).CrossRefGoogle Scholar
13.Navrotsky, A., Phys. Chem. Minerals 24, 222 (1997).CrossRefGoogle Scholar
14. JADE, Materials Data Inc. (1997).Google Scholar
15.Helean, K.B. and Navrotsky, A., J. Therm. Anal. Cal. 69, 751 (2002).CrossRefGoogle Scholar
16.Kanke, Y. and Navrotsky, A., J. Solid State Chem. 141, 424 (1998).CrossRefGoogle Scholar
17.Geller, S. and Raccah, P.M., Phys. Rev. B 2, 1167 (1970).CrossRefGoogle Scholar
18.Marti, W., Fischer, P., Altorfer, F., Scheel, H.J., and Tadin, M., J. Phys.: Condens. Matter 6, 127 (1994).Google Scholar
19.Risbud, S., Helean, K.B., Wilding, M.C., Lu, P., and Navrotsky, A., J. Mater. Res. 16, 2780 (2001).CrossRefGoogle Scholar
20.Robie, R.A., Hemingway, B.S., and Fisher, J.R., Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures, Geological, U.S. Survey Bulletin No. 1452 (1979).Google Scholar
21.Ushakov, S.V., Helean, K.B., Navrotsky, A., and Boatner, L.A., J. Mater. Res. 16, 2623 (2001).CrossRefGoogle Scholar
22.Bularzik, J., Navrotsky, A., DiCarlo, J., Bringley, J., Scott, B., and Trail, S., J. Solid State Chem. 94, 418 (1991).CrossRefGoogle Scholar
23.Majzlan, J., Navrotsky, A., and Evans, B.J., Phys. Chem. Minerals 29, 515 (2002).CrossRefGoogle Scholar
24.Ranade, M.R., Tessier, F., Navrotsky, A., and Marchand, R., J. Mater. Res. 16, 2824 (2001).CrossRefGoogle Scholar
25.Chase, M.W. Jr., NIST-JANAF Thermochemical Tables, 4th ed. (AIP, 1998).Google Scholar
26.Knacke, O., Kubaschweski, O., and Hesselmann, K., Thermochemical Properties of Inorganic Substances, 2nd ed. (Springer-Verlag, 1991).Google Scholar
27.Cordfunke, E.H.P. and Konings, R.J.M., Thermochim. Acta 375, 65 (2001).CrossRefGoogle Scholar
28.Kuncewicz, W.-Kupczyk, Kobertz, D., Miller, M., Chatillon, C., Singheiser, L., and Hilpert, K., J. Am. Ceram. Soc. 85, 2299 (2002).CrossRefGoogle Scholar
29.Jacob, K.T., Dasgupta, N., Nafe, H., and Aldinger, F., J. Mater. Res. 15, 2836 (2000).CrossRefGoogle Scholar
30.Azad, M., Sudha, R., and Sreedharan, O.M., Mater. Res. Bull. 26, 97 (1991).CrossRefGoogle Scholar
31.Zhang, Y., Navrotsky, A., Tangeman, J.A., and Richard, J.K. Weber, Non-Cryst, J.. Solids (in press).Google Scholar
32.Wu, P. and Pelton, A.D., J. Alloy. Compd. 179, 259 (1992).CrossRefGoogle Scholar
33.Wang, C., Xu, X., Man, H., and Xiao, Y., Inorg. Chim. Acta 140, 181 (1987).CrossRefGoogle Scholar
34.Shannon, R.D., Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
35.Navrotsky, A., Physics and Chemistry of Earth Materials (Cambridge University Press, 1994), p. 243.CrossRefGoogle Scholar
36.Yokokawa, H., Kawada, T., and Dokiya, M., J. Am. Ceram. Soc. 72, 152 (1989).CrossRefGoogle Scholar
37.Navrotsky, A., in Structure and Bonding in Crystals Vol. II, edited by O'Keeffe, M. and Navrotsky, A. (Academic Press, 1981), p. 71.CrossRefGoogle Scholar
38.Takayama-Muromachi, E. and Navrotsky, A., J. Solid State Chem. 72, 244 (1988).CrossRefGoogle Scholar
39.Ushakov, S., Cheng, J., Navrotsky, A., Wu, J.R., and Haile, S.M., Mater. Res. Soc. Symp. Proc. 718, 71 (2002). 49765CrossRefGoogle Scholar