Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T00:57:37.560Z Has data issue: false hasContentIssue false

Entrapment of DFPase in titania coatings from a biomimetically derived method

Published online by Cambridge University Press:  30 March 2011

Shaun Filocamo*
Affiliation:
US Army Natick Soldier Research, Development, and Engineering Center, Natick, Massachusetts 01760
Robert Stote
Affiliation:
US Army Natick Soldier Research, Development, and Engineering Center, Natick, Massachusetts 01760
David Ziegler
Affiliation:
US Army Natick Soldier Research, Development, and Engineering Center, Natick, Massachusetts 01760
Heidi Gibson
Affiliation:
US Army Natick Soldier Research, Development, and Engineering Center, Natick, Massachusetts 01760
*
a)Address all correspondence to this author. e-mail: Shaun.Filocamo@us.army.mil
Get access

Abstract

Silicon oxide has been widely used to encapsulate biomolecules to preserve their activity in less than ideal environments. However, there are other inorganic oxides with inherent properties that would be advantageous in creating a multifunctional material. Titanium oxide exhibits properties that have applications in areas such as electronics, energy conversion, and decontamination. Herein is reported the formation of titania coatings fabricated on polymer beads using a biomimetic approach and characterized with scanning electron microscopy and energy dispersive x-ray spectroscopy. The approach involves the use of functionalized polymer beads, which initiate oxide formation from a water-soluble titanium complex. The method was used to encapsulate the enzyme diisopropylfluorophosphatase, in situ, within the oxide matrix under buffered aqueous conditions while retaining its enzymatic activity against diisopropylfluorophosphate. In addition, the biomimetically produced titania was shown to exhibit UV-assisted degradation activity against an ethidium bromide dye, upon liberation from the coating template.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.May, S.W. and Li, N.N.: Liquid-membrane encapsulated enzymes, in Biomedical Applications of Immobilized Enzymes and Proteins, edited by Chang, T.M.S. (Plenum Press, New York, 1977), pp. 171190.CrossRefGoogle Scholar
2.Gill, I. and Ballesteros, A.: Bioencapsulation within synthetic polymers (Part 1): Sol–gel encapsulated biologicals. Trends Biotechnol. 18, 282 (2000).CrossRefGoogle ScholarPubMed
3.Gill, I. and Ballesteros, A.: Bioencapsulation within synthetic polymers (Part 2): Non-sol–gel protein–polymer biocomposites. Trends Biotechnol. 18, 469 (2000).Google Scholar
4.Livage, J., Coradin, T., and Roux, C.: Encapsulation of biomolecules in silica gels. J. Phys. Condens. Matter 13, R673 (2001).Google Scholar
5.Yang, Z., Si, S., and Zhang, C.: Magnetic single-enzyme nanoparticles with high activity and stability. Biochem. Biophys. Res. Commun. 367, 169 (2008).Google Scholar
6.Chang, T.M.S.: Encapsulation of enzymes, cell contents, cells, vaccines, antigens, antiserum, cofactors, hormones, and proteins, in Biomedical Applications of Immobilized Enzymes and Proteins, edited by Chang, T.M.S. (Plenum Press, New York, 1977), pp. 6990.CrossRefGoogle Scholar
7.Walde, P. and Ichikawa, S.: Enzymes inside lipid vesicles: Preparation, reactivity and applications. Biomol. Eng. 18, 143 (2001).Google Scholar
8.Li, Y. and Yip, W.T.: Liposomes as protective capsules for active silica sol-gel biocomposite synthesis. J. Am. Chem. Soc. 127, 12756 (2005).Google Scholar
9.Cole, K.E., Ortiz, A.N., Schoonen, M.A., and Valentine, A.M.: Peptide- and long-chain polyamine-induced synthesis of micro- and nanostructured titanium phosphate and protein encapsulation. Chem. Mater. 18, 4592 (2006).CrossRefGoogle Scholar
10.Luckarift, H.R., Spain, J.C., Naik, R.R., and Stone, M.O.: Enzyme immobilization in a biomimetic silica support. Nat. Biotechnol. 22, 211 (2004).Google Scholar
11.Naik, R.R., Tomczak, M.M., Luckarift, H.R., Spain, J.C., and Stone, M.O.: Entrapment of enzymes and nanoparticles using biomimetically synthesized silica. Chem. Commun. (15), 1684 (2004).Google Scholar
12.Sharma, R.K., Das, S., and Maitra, A.: Enzymes in the cavity of hollow silica nanoparticles. J. Colloid Interface Sci. 284, 358 (2005).Google Scholar
13.Miller, S.A., Hong, E.D., and Wright, D.: Rapid and efficient enzyme encapsulation in a dendrimer silica nanocomposite. Macromol. Biosci. 6, 839 (2006).Google Scholar
14.Mureseanu, M., Galarneau, A., Renard, G., and Fajula, F.: A new mesoporous micelle-templated silica route for enzymes encapsulation. Langmuir 21, 4648 (2005).Google Scholar
15.Pierre, A.C.: The sol-gel encapsulation of enzymes. Biocatalysis Biotransform. 22, 145 (2004).Google Scholar
16.Wang, Y. and Caruso, F.: Enzyme encapsulation in nanoporous silica spheres. Chem. Commun. (13), 1528 (2004).Google Scholar
17.Wei, Y., Xu, J., Feng, Q., Dong, H., and Lin, M.: Encapsulation of enzymes in mesoporous host materials via the nonsurfactant-templated sol-gel process. Mater. Lett. 44, 6 (2000).Google Scholar
18.Zhang, Y., Wu, H., Li, J., Li, L., Jiang, Y., Jiang, Y., and Jiang, Z.: Protamine-templated biomimetic hybrid capsules: Efficient and stable carrier for enzyme encapsulation. Chem. Mater. 20, 1041 (2008).Google Scholar
19.Buisson, P., Hernandez, C., Pierre, M., and Pierre, A.C.: Encapsulation of lipases in aerogels. J. Non-Cryst. Solids 285, 295 (2001).Google Scholar
20.Chen, Y., Yi, Y., Brennan, J.D., and Brook, M.A.: Development of macroporous titania monoliths using a biocompatible method. Part 1: Material fabrication and characterization. Chem. Mater. 18, 5326 (2006).Google Scholar
21.Darder, M., Aranda, P., Hernández-Vélez, M., Manova, E., and Ruiz-Hitzky, E.: Encapsulation of enzymes in alumina membranes of controlled pore size. Thin Solid Films 495, 321 (2006).Google Scholar
22.Avnir, D., Braun, S., and Ottolenghi, M.: Encapsulation of organic molecules and enzymes in sol-gel glasses. A review of novel photoactive, optical, sensing and bioactive materials, in Supermolecular Architecture: Synthetic Control in Thin Films and Solids, edited by Bein, T. (ACS Symp. Ser. 499, New York, NY, 1992), pp. 384404.CrossRefGoogle Scholar
23.Campas, M. and Marty, J.-L.: Encapsulation of enzymes using polymers and sol-gel techniques. Methods Biotech. 22, 77 (2006).Google Scholar
24.Shimizu, K., Cha, J., Stucky, G.D., and Morse, D.E.: Silicatein alpha: Cathepsin L-like protein in sponge biosilica. Proc. Natl. Acad. Sci. USA 95, 6234 (1998).Google Scholar
25.Kroger, N., Deutzmann, R., and Sumper, M.: Polycationic peptides from diatom biosilica that directs silica nanosphere formation. Science 286, 1129 (1999).Google Scholar
26.Kroger, N., Deutzmann, R., and Sumper, M.: Silica-precipitating peptides from diatoms. J. Biol. Chem. 276, 26066 (2001).Google Scholar
27.Sumper, M. and Kröger, N.: Silica formation in diatoms: The function of long-chain polyamines and silaffins. J. Mater. Chem. 14, 2059 (2004).Google Scholar
28.Cha, J.N., Stucky, G.D., Morse, D.E., and Deming, T.J.: Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403, 289 (2000).Google Scholar
29.Kim, D.J., Lee, K.-B., Chi, Y.S., Kim, W.-J., Paik, H.-J., and Choi, I.S.: Biomimetic formation of silica thin films by surface-initiated polymerization of 2-(dimethylamino)ethyl methacrylate and silicic acid. Langmuir 20, 7904 (2004).Google Scholar
30.Roth, K.M., Zhou, Y., Yang, W., and Morse, D.E.: Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH. J. Am. Chem. Soc. 127, 325 (2005).Google Scholar
31.Belton, D.J., Patwardhan, S.V., and Perry, C.C.: Spermine, spermidine and their analogues generate tailored silicas. J. Mater. Chem. 15, 4629 (2005).Google Scholar
32.Tomczak, M.M., Glawe, D.D., Drummy, L.F., Lawrence, C.G., Stone, M.O., Perry, C.C., Pochan, D.J., Deming, T.J., and Naik, R.R.: Polypeptide-templated synthesis of hexagonal silica platelets. J. Am. Chem. Soc. 127, 12577 (2005).Google Scholar
33.Patwardhan, S.V., Shiba, K., Schröder, H.C., Müller, W.E.G., Clarson, S.J., and Perry, C.C.: The interaction of ‘Silicon’ with proteins: Part 2. The role of bioinspired peptide and recombinant proteins in silica polymerization, in Science and Technology of Silicones and Silicone-Modified Materials, edited by Clarson, S.J., Fitzgerald, J.J., Owen, M.J., Smith, S.D., and Van Dyke, M.E. (ACS Sym. Series, Vol. 964, Washington, DC, 2007), pp.328347.CrossRefGoogle Scholar
34.Belton, D.J., Patwardhan, S.V., Annenkov, V.V., Danilovtseva, E.N., and Perry, C.C.: From biosilicification to tailored materials: Optimizing hydrophobic domains and resistance to protonation of polyamines. Proc. Natl. Acad. Sci. USA 105, 5963 (2008).Google Scholar
35.Singh, B., Saxena, A., Nigama, A.K., Ganesan, K., and Pandeya, P.: Impregnated silica nanoparticles for the reactive removal of sulphur mustard from solutions. J. Hazard. Mater. 161, 933 (2009).Google Scholar
36.Saxena, A., Srivastava, A.K., and Singh, B.: Kinetics of adsorption of 2-CEES and HD on impregnated silica nanoparticles under static conditions. AlChE J. 55, 1236 (2009).Google Scholar
37.Gude, K., Gun’ko, V.M., and Blitz, J.P.: Adsorption and photocatalytic decomposition of methylene blue on surface modified silica and silica-titania. Colloids Surf. A Physicochem. Eng. Asp. 325, 17 (2008).CrossRefGoogle Scholar
38.Davit, P., Martra, G., and Coluccia, S.: Photocatalytic degradation of organic compounds on TiO2 powders-FT-IR investigation of surface reactivity and mechanistic aspects. J. Jpn. Petrol. Inst. 47, 359 (2004).Google Scholar
39.Gaya, U.I. and Abdullah, A.H.: Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. Chem. 9, 1 (2008).Google Scholar
40.Malato, S., Blanco, J., Alarcón, D.C., Maldonado, M.I., Fernández-Ibáñez, P., and Gernjak, W.: Photocatalytic decontamination and disinfection of water with solar collectors. Catal. Today 122, 137 (2007).CrossRefGoogle Scholar
41.Luckarift, H.R., Dickerson, M.B., Sandhage, K.H., and Spain, J.C.: Rapid, room-temperature synthesis of antimicrobial bionanocomposites of lysozyme with amorphous silica or titania. Small 2, 640 (2006).Google Scholar
42.Cole, K.E. and Valentine, A.M.: Spermidine and spermine catalyze the formation of nanostructured titanium oxide. Biomacromolecules 8, 1641 (2007).CrossRefGoogle ScholarPubMed
43.Sewell, S.L. and Wright, D.W.: Biomimetic synthesis of titanium dioxide utilizing the R5 peptide derived from Cylindrotheca fusiformis. Chem. Mater. 18, 3108 (2006).Google Scholar
44.Bansal, V., Rautaray, D., Bharde, A., Ahire, K., Sanyal, A., Ahmad, A., and Sastry, M.: Fungus-mediated biosynthesis of silica and titania particles. J. Mater. Chem. 15, 2583 (2005).Google Scholar
45.Zhang, D. and Qi, L.: Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes. Chem. Commun. (21), 2735 (2005).Google Scholar
46.Sumerel, J.L., Yang, W., Kisailus, D., Weaver, J.C., Choi, J.H., and Morse, D.E.: Biocatalytically templated synthesis of titanium dioxide. Chem. Mater. 15, 4804 (2003).CrossRefGoogle Scholar
47.Jiang, Y., Yang, D., Zhang, L., Li, L., Sun, Q., Zhang, Y., Li, J., and Jiang, Z.: Biomimetic synthesis of titania nanoparticles induced by protamine. Dalton Trans. 31, 4165 (2008).Google Scholar
48.Jiang, Y., Sun, Q., Jiang, Z., Zhang, L., Li, J., Li, L., and Sun, X.: The improved stability of enzyme encapsulated in biomimetic titania particles. Mater. Sci. Eng. C 29, 328 (2009).Google Scholar
49.Imhof, A.: Preparation and characterization of titania-coated polystyrene spheres and hollow titania shells. Langmuir 17, 3579 (2001).Google Scholar
50.Li, H., Ha, C.-S., and Kim, I.: Facile fabrication of hollow silica and titania microspheres using plasma-treated polystyrene spheres as sacrificial templates. Langmuir 24, 10552 (2008).Google Scholar
51.Jia, Q.X., McCleskey, T.M., Burrell, A.K., Lin, Y., Collis, G.E., Wang, H., Li, A.D.Q., and Foltyn, S.R.: Polymer-assisted deposition of metal-oxide films. Nat. Mater. 3, 529 (2004).Google Scholar
52.Suzuki, M., Nakajima, Y., Sato, T., Shirai, H., and Hanabusa, K.: Fabrication of TiO2 using L-lysine-based organogelators as organic templates: Control of the nanostructures. Chem. Commun. (4), 377 (2006).Google Scholar
53.Pender, M.J., Sowards, L.A., Hartgerink, J.D., Stone, M.O., and Naik, R.R.: Peptide-mediated formation of single-wall carbon nanotube composites. Nano Lett. 6, 40 (2006).CrossRefGoogle ScholarPubMed
54.Dickerson, M.B., Jones, S.E., Cai, Y., Ahmad, G., Naik, R.R., Kröger, N., and Sandhage, K.H.: Identification and design of peptides for the rapid, high-yield formation of nanoparticulate TiO2 from aqueous solutions at room temperature. Chem. Mater. 20, 1578 (2008).Google Scholar
55.Kisailus, D., Truong, Q., Amemiya, Y., Weaver, J.C., and Morse, D.E.: Self-assembled bifunctional surface mimics and enzymatic and templating protein for the synthesis of a metal oxide semiconductor. Proc. Natl. Acad. Sci. USA 103, 5652 (2006).CrossRefGoogle ScholarPubMed
56.Zhang, D., Yang, D., Zhang, H., Lu, C., and Qi, L.: Synthesis and photocatalytic properties of hollow microparticles of titania and titania/carbon composites templated by Sephadex G-100. Chem. Mater. 18, 3477 (2006).Google Scholar
57.Mounter, L.A., Baxter, R.F., and Chanutin, A.: Dialkylfluorophosphatases of microorganisms. J. Biol. Chem. 215, 699 (1955).Google Scholar
58.Hoskin, F.C.G.: Diisopropylphosphorofluoridate and tabun: Enzymatic hydrolysis and nerve function. Science 172, 1243 (1971).Google Scholar
59.Hoskin, F.C.G., Walker, J.E., and Stote, R.: Degradation of nerve gases by CLECS and cells: Kinetics of heterogenous systems. Chem. Biol. Interact. 119, 439 (1999).Google Scholar
60.Faisal, M., Abu Tariq, M., and Muneer, M.: Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania. Dyes Pigments 72, 233 (2005).Google Scholar
61.Kroger, N., Deutzmann, R., and Sumper, M.: Polycationic peptides from Diatom biosilica that direct silica nanosphere formation. Science 286, 1129 (1999).Google Scholar
62.Coradin, T. and Lopez, P.J.: Biogenic silica patterning: Simple chemistry or subtle biology? ChemBioChem 3, 1 (2003).Google Scholar
63.Lopez, P.J., Gautier, C., Livage, J., and Coradin, T.: Mimicking biogenic silica nanostructures formation. Curr. Nanosci. 1, 73 (2005).CrossRefGoogle Scholar
64.Patterson, A.L.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939).Google Scholar
65.Jagtap, N., Bhagwat, M., Awati, P., and Ramaswamy, V.: Characterization of nanocrystalline anatase titania: An in situ HTXRD study. Thermochim. Acta 427, 37 (2005).Google Scholar
66.Hartleib, J. and Ruterjans, H.: High-yield expression, purification, and characterization of the recombinant Diisopropylfluorophosphatase from Loligo vulgaris. Protein Expression Purif. 21, 210 (2001).Google Scholar
67.Hoskin, F.C.G. and Roush, A.H.: Hydrolysis of nerve gas by squid-type diisopropyl phosphorofluoridate hydrolyzing enzyme on agarose resin. Science 215, 1255 (1982).Google Scholar
68.Hoskin, F.C.G.: An organophosphorus detoxifying enzyme unique to squid, in Squid as Experimental Animals, edited by Gilbert, D.E., Adelman, W.J., and Arnold, J.M. (Plenum Press, New York, 1990), pp. 469480.Google Scholar
69.Hartleib, J. and Ruterjans, H.: Insights into the reaction mechanism of the diisopropyl fluorophosphatase from Loligo vulgaris by means of kinetic studies, chemical modification and site-directed mutagenesis. Biochim. Biophys. Acta 1546, 312 (2001).Google Scholar
70.Drevon, G.F., Danielmeier, K., Federspiel, W., Stolz, D.B., Wicks, D.A., Yu, P.C., and Russell, A.J.: High-activity enzyme-polyurethane coatings. Biotechnol. Bioeng. 79, 785 (2002).Google Scholar
71.Drevon, G.F., Hartleib, J., Scharff, E., Rüterjans, H., and Russell, A.J.: Thermoinactivation of diisopropylfluorophosphatase- containing polyurethane polymers. Biomacromolecules 2, 664 (2001).Google Scholar
72.Luckarift, H.R., Dickerson, M.B., Sandhage, K.H., and Spain, J.C.: Rapid, room-temperature synthesis of antibacterial bionanocomposites of Lysozyme with amorphous Silica and Titania. Small 2, 640 (2006).Google Scholar