Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-02T20:22:30.145Z Has data issue: false hasContentIssue false

Epitaxial growth of PbTiO3 thin films on (001) SrTiO3 from solution precursors

Published online by Cambridge University Press:  03 March 2011

Andreas Seifert
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
Fred F. Lange
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
James S. Speck
Affiliation:
Materials Department, College of Engineering, University of California, Santa Barbara, California 93106
Get access

Abstract

A mixed alkoxide liquid precursor was used to form epitaxial PbTiO3 thin films by spin-coating on cubic (001) SrTiO3 substrates. The films were heat-treated at temperatures between 380 °C/1 h and 800 °C/1 h. X-ray diffraction, atomic force microscopy, scanning and transmission electron microscopy were used to characterize the microstructure of the films and to evaluate the epitaxial phenomena. At ∼400 °C/1 h, a polycrystalline, metastable Pb-Ti fluorite crystallizes from the pyrolyzed amorphous precursor. At slightly higher temperatures (∼420 °C/1 h), the thermodynamically stable phase with the perovskite structure epitaxially nucleates at the film/substrate interface. A small number of epitaxial grains grow through the film toward the surface and consume the nanocrystalline fluorite grains. Coarsening of the perovskite grains leads to a reduction in mosaic spread during further heating. Pores, which concurrently coarsen with grain growth, produce a pitted surface as they disappear from within the film. At 800 °C/1 ha dense epitaxial PbTiO3 film with a smooth surface is observed. Parameters governing the formation of a- and c-domains are discussed as well as the small tilts of the domain axes away from the substrate normal.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sheppard, L. M., Ceram. Bull. 71 (1), 85 (1992).Google Scholar
2Haertling, G. H., J. Vac. Sci. Technol. A 9 (3), 414 (1991).CrossRefGoogle Scholar
3Iijima, K., Takayama, R., Tomita, Y., and Ueda, I., J. Appl. Phys. 60 (1), 2914 (1986).CrossRefGoogle Scholar
4Sviridov, E. V., Alyoshin, V. A., Golovko, Y. I., Zakharchenko, I. N., Mukhortov, V. M., and Dudkevich, V. P., Phys. Status Solidi (a) 121, 157 (1990).CrossRefGoogle Scholar
5Iijima, K., Ueda, I., and Kugimiya, K., Jpn. J. Appl. Phys. 30 (9b), 2149 (1991).CrossRefGoogle Scholar
6Kushida, K. and Takeuchi, H., IEEE Trans. Ultrason. Ferroelec. Freq. Control 38 (6), 656 (1991).CrossRefGoogle Scholar
7Bruchhaus, R., Huber, H., Pitzer, D., and Wersing, W., Ferroelec. 127, 137 (1992).CrossRefGoogle Scholar
8Cheung, J. T., Morgan, P. E.D., and Neugaonkar, R., Integrated Ferroelec. 3, 147 (1993).CrossRefGoogle Scholar
9Ramesh, R., Sands, T., and Keramidas, V. G., Appl. Phys. Lett. 63 (6), 731 (1993).CrossRefGoogle Scholar
10Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V. G., Haakenaasen, R., and Fork, D. K., Appl. Phys. Lett. 63 (26), 3592 (1993).CrossRefGoogle Scholar
11Matsubara, S., Miura, S., Miyasaka, Y., and Shohata, N., J. Appl. Phys. 66 (12), 5826 (1989)CrossRefGoogle Scholar
12de Keijser, M., Dormans, G. J. M., Cillessen, J. F. M., de Leeuw, D.M., and Zandbergen, H. W., Appl. Phys. Lett. 58 (23), 2636 (1991).CrossRefGoogle Scholar
13Gao, Y., Bai, G., Merkle, K. L., Shi, Y., Chang, H. L. M., Shen, Z., and Lam, D. J., J. Mater. Res. 8, 145 (1993).CrossRefGoogle Scholar
14Livage, J., Henry, M., and Sanchez, C., Prog. Solid State Chem. 18, 259 (1988).CrossRefGoogle Scholar
15Mantese, J. V., Micheli, A. L., Hamdi, A. H., and West, R. W., MRS Bull. XIV (10), 48 (1989).CrossRefGoogle Scholar
16Daughton, W. J. and Givens, S. L., J. Electrochem. Soc. 129 (1), 173 (1982).CrossRefGoogle Scholar
17Brinker, C. J. and Scherer, G. W., Sol-Gel Science (Academic Press, New York, 1990).Google Scholar
18Bauer, E. G., Dodson, B. W., Ehrlich, D. J., Feldman, L. C., Flynn, C. P., Geis, M. W., Harbison, J. P., Matyi, R. J., Peercy, P. S., Petroff, P. M., Phillips, J. M., Stringfellow, G. B., and Zangwill, A., J. Mater. Res. 5, 852 (1990).CrossRefGoogle Scholar
19Lange, F. F., in Proc. Recrystallization ‘92, edited by Fuentes, M. and Sevillano, J.G. (Trans Tech Publications, Brooksfild, VT, 1992), p. 81.Google Scholar
20Miller, K. T., Chan, C. J., Cain, M. G., and Lange, F. F., J. Mater. Res. 8, 169 (1993).CrossRefGoogle Scholar
21Seifert, A., Lange, F. F., and Speck, J. S., J. Am. Ceram. Soc. 76 (2), 443 (1993).CrossRefGoogle Scholar
22Miller, K. T. and Lange, F. F., J. Mater. Res. 6, 2387 (1991).CrossRefGoogle Scholar
23Vaidya, K. J., Yang, C. Y., DeGraef, M., and Lange, F.F., J. Mater. Res. 9, 410 (1994).CrossRefGoogle Scholar
24Golden, S. J., Lange, F. F., Clarke, D. R., Chang, L. D., and Necker, C. T., Appl. Phys. Lett. 61, 351 (1992).CrossRefGoogle Scholar
25Barlingay, C. K. and Dey, S. K., Appl. Phys. Lett. 61 (11), 1278 (1992).CrossRefGoogle Scholar
26Swartz, S. L., Ramamurthi, S. D., Busch, J. R., and Wood, V. E., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. A. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 533.Google Scholar
27Hirano, S., Yogo, T., Kikuta, K., Araki, Y., Saitoh, M., and Ogasahara, S., J. Am. Ceram. Soc. 75 (10), 2785 (1992).CrossRefGoogle Scholar
28Tuttle, B. A., Voigt, J. A., Goodnow, D. C., Lamppa, D. L., Headley, T. J., Eatough, M. O., Zender, G., Nasby, R. D., and Rodgers, S. M., J. Am. Ceram. Soc. 76 (6), 1537 (1993).CrossRefGoogle Scholar
29Yoon, D. S., Kim, C. J., Lee, J. S., Lee, W. J., and No, K., J. Mater. Res. 9, 420 (1994).CrossRefGoogle Scholar
30Blum, J. B. and Gurkovich, S. R., J. Mater. Sci. 20, 4479 (1985).CrossRefGoogle Scholar
31Wilkinson, A. P., Speck, J. S., Cheetham, A. K., Natarajan, S., and Thomas, J. M., Chem. Mater. 6 (6), 750 (1994).CrossRefGoogle Scholar
32Kwok, C. K., Desu, S. B., and Kammerdiner, L., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 83.Google Scholar
33Carim, A. H., Tuttle, B. A., Doughty, D. H., and Martinez, S. L., J. Am. Ceram. Soc, 74 (6), 1455 (1991).CrossRefGoogle Scholar
34Tuttle, B. A., Schwartz, R. W., Doughty, D. H., and Voigt, J. A., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 159.Google Scholar
35Chang, J. F. and Desu, S. B., J. Mater. Res. 9, 955 (1994).CrossRefGoogle Scholar
36Gurkovich, S. R. and Blum, J. B., in infrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L. L. and Ulrich, D.R. (Wiley-Interscience, New York, 1984), p. 152.Google Scholar
37Ramamurthi, S. D. and Payne, D. A., J. Am. Ceram. Soc. 73 (8), 2547 (1990).CrossRefGoogle Scholar
38Budd, K. D., Dey, S. K., and Payne, D. A., Proc. Br. Ceram. Soc. 36, 107 (1985).Google Scholar
39Shirane, G., Pepinsky, R., and Frazer, B. C., Acta Crystallogr. 9, 131 (1956).CrossRefGoogle Scholar
40LeBihan, R., Ferroelec. 97, 19 (1989).CrossRefGoogle Scholar
41Speck, J. S., Daykin, A. C., Seifert, A., Romanor, A. E., and Pompe, W., submitted for publication.Google Scholar
42Leung, D. K., Chang, C. J., Riihle, M., and Lange, F. F., J. Am. Ceram. Soc. 74 (11), 2786 (1991).CrossRefGoogle Scholar
43Balmer, M. L., Lange, F. F., and Levi, C. G., J. Am. Ceram. Soc. 75 (4), 946 (1992).CrossRefGoogle Scholar
44Tani, T. and Payne, D. A., J. Am. Ceram. Soc. 77 (5), 1242 (1994).CrossRefGoogle Scholar
45Subramanian, M. A., Aravamudan, G., and Rao, G. V. S., Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
46Jayaram, V., DeGraef, M., and Levi, C. G., Acta Metall. et Mater. 42 (6), 1829 (1994).CrossRefGoogle Scholar
47Kingon, A. I. and Clark, B. C., J. Am. Ceram. Soc. 66 (4), 253 (1983).CrossRefGoogle Scholar
48Kingon, A. I. and Clark, B. C., J. Am. Ceram. Soc. 66 (4), 256 (1983).CrossRefGoogle Scholar
49Holman, R. L. and Fulrath, R. M., J. Appl. Phys. 44 (12), 5227 (1973).CrossRefGoogle Scholar
50Yamaguchi, O., Fukuoka, T., and Kawakami, Y., J. Mater. Sci. Lett. 9, 958 (1990).CrossRefGoogle Scholar
51Hu, H., Peng, C. J., and Krupanidhi, S. B., Thin Solid Films 223, 327 (1993).CrossRefGoogle Scholar
52Sudre, O. and Lange, F. F., J. Am. Ceram. Soc. 75 (3), 519 (1992).CrossRefGoogle Scholar
53Speck, J. S. and Pompe, W., J. Appl. Phys. 76 (1), 466 (1994).CrossRefGoogle Scholar
54Roitburd, A. L., Phys. Status Solidi (a) 37, 329 (1976).CrossRefGoogle Scholar
55Speck, J. S., Seifert, A., Pompe, W., and Ramesh, R., J. Appl. Phys. 76 (1), 477 (1994).CrossRefGoogle Scholar