Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T02:08:41.999Z Has data issue: false hasContentIssue false

Errors associated with depth-sensing microindentation tests

Published online by Cambridge University Press:  03 March 2011

J. Menčík
Affiliation:
CSIRO Division of Applied Physsics, Lindfield, New South Wales 2070, and University of Sydney, Department of Mechanical Engineering, Sydney, New South Wales 2006, Australia
M.V. Swain
Affiliation:
CSIRO Division of Applied Physsics, Lindfield, New South Wales 2070, and University of Sydney, Department of Mechanical Engineering, Sydney, New South Wales 2006, Australia
Get access

Abstract

In the determination of mechanical properties by ultra-microindentation, various errors can appear. This paper analyzes various sources of errors in estimation of elastic modulus and hardness. These errors arise from uncertainties of the indenter geometry and properties, as well as measuring instrument limitations and errors, such as the minimum detectable load, compliance, and noise of the system. Other sources of errors are thermal drift, shape of the impression, and scatter of properties of the tested material. Characteristic features and the magnitude of individual kinds of errors are discussed, together with formulas and recommended methods for their reduction.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Doemer, M. F. and Nix, W. D., J. Mater. Res. 1, 601609 (1986).Google Scholar
2Nix, W. D., Metall. Trans. 20A, 22172245 (1989).CrossRefGoogle Scholar
3Loubet, J. L., Georges, J. M., and Meille, G., in Microindentation Techniques in Materials Science and Engineering, edited by Blau, P. and Lawn, B. R. (ASTM STP 889, Philadelphia, PA, 1986), pp. 7289.Google Scholar
4Oliver, W. C., Hutchings, R. and Pethica, J. B., in Microindentation Techniques in Materials Science and Engineering, edited by Blau, P. and Lawn, B. R. (ASTM STP 889, Philadelphia, PA, 1986), pp. 90108.Google Scholar
5Microindentation Techniques in Materials Science and Engineering, edited by Blau, P. and Lawn, B. R. (ASTM STP 889, Philadelphia, PA, 1986).Google Scholar
6Pharr, G. M. and Oliver, W. C., MRS Bull. XVIII, 2833 (1992).CrossRefGoogle Scholar
7Bell, T., Bendeli, A., Field, J. S., Swain, M. V., and Thwaite, E.G., Metrologia 28, 463469 (1991/92).CrossRefGoogle Scholar
8Bell, T., Field, J. S., and Swain, M.V., Thin Solid Films 220, 289294 (1992).CrossRefGoogle Scholar
9Swain, M. V. and Menčik, J., in Proc. Int. UACEM Symposium, edited by Pryputniewicz, J. (Worcester Polytechnical Institute, Worcester, MA, 1993), pp. 444454.Google Scholar
10King, R. B., Int. J. Solids Structures 23, 16571664 (1987).CrossRefGoogle Scholar
11Bhattacharya, A. K. and Nix, W. D., Int. J. Solid Structures 24, 12871298 (1988).CrossRefGoogle Scholar
12Gao, H., Chiu, C., and Lee, J., Int. J. Solid Structures 29, 24712492 (1992).Google Scholar
13Fabes, B. D., Oliver, W. C., McKee, R.A., and Walker, F.J., J. Mater. Res. 7, 30563064 (1992).CrossRefGoogle Scholar
14Swain, M. V. and Weppelmann, E. R., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E. Jr., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), pp. 177182.Google Scholar
15Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 15641583 (1992).CrossRefGoogle Scholar
16Ullner, Ch., Phys. Status Solidi A 129, 167180 (1992).CrossRefGoogle Scholar
17Sargent, P. M., in Microindentation Techniques in Materials Science and Engineering, edited by Blau, P. and Lawn, B. R. (ASTM STP 889, Philadelphia, PA, 1986), pp. 160174.Google Scholar
18Burnett, P. J. and Rickerby, D. S., Thin Solid Films 148, 4150 (1987).CrossRefGoogle Scholar
19Farges, G. and Degout, D., Thin Solid Films 181, 365374 (1989).CrossRefGoogle Scholar
20Window, B., Field, J. S., and Bell, T., Report STFT 88/10 CSIRO, Div. Appl. Phys., Sydney (1988).Google Scholar
21Field, J. S. and Swain, M. V., J. Mater. Res. 8, 297306 (1993).CrossRefGoogle Scholar
22Bell, T. J., Field, J. S., and Swain, M. V., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), pp. 331336.Google Scholar
23Weppelmann, E. R., Field, J. S., and Swain, M.V., J. Mater. Res. 8, 830840 (1993).CrossRefGoogle Scholar
24Johnson, K. L., Contact Mechanics (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar
25Joslin, D. L. and Oliver, W. C., J. Mater. Res. 5, 123126 (1990).CrossRefGoogle Scholar
26Weiss, H. J., Phys. Status Solidi A 99, 491501 (1987).CrossRefGoogle Scholar
27Chaudhri, M. M. and Winter, M., J. Phys. D: Appl. Phys. 21, 370374 (1988).CrossRefGoogle Scholar
28Stone, D., LaFontaine, W. R., Alexopoulos, P., Wu, T. W., and Li, C-Y., J. Mater. Res. 3, 141147 (1988).CrossRefGoogle Scholar
29Laursen, T. A. and Simo, J. C., J. Mater. Res. 7, 618626 (1992).CrossRefGoogle Scholar
30Madsen, D. T., Govinazzo, R. J., Ritter, J. E. and Lardner, T. J., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L. B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), pp. 431436.Google Scholar
31Tokura, H., Window, B., Neely, D., and Swain, M.V., Thin Solid Films 253, 344348 (1994).CrossRefGoogle Scholar
32Pharr, G. M., Oliver, W. C., and Clarke, D. R., Scripta Metall. 23, 19491952 (1989).CrossRefGoogle Scholar
33Pharr, G. M., Oliver, W. C., and Harding, D. S., J. Mater. Res. 6, 11291130 (1991).CrossRefGoogle Scholar
34Freund, J. F., Elementary Modern Statistics, 6th Ed. (Prentice-Hall, Englewood Cliffs, NJ, 1984).Google Scholar