Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-30T21:53:52.336Z Has data issue: false hasContentIssue false

Etch-delineation of defects in diamond by exposure to an oxidizing flame

Published online by Cambridge University Press:  31 January 2011

D.P. Malta
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194
J.B. Posthill
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194
R.A. Rudder
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194
G.C. Hudson
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194
R.J. Markunas
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194
Get access

Abstract

An experimental study of the etching properties of defects in diamond using propane flame exposure in air is presented. Both natural diamond crystals and polycrystalline diamond films were exposed to a flame for an optimum time of 3–4 s. This process topographically delineates defects in diamond via an accelerated etch rate at defect sites. Using transmission electron microscopy (TEM) to determine the exact nature and density of defects present in the diamond, we have found a direct correlation between topographical delineation observed by scanning electron microscopy (SEM) and the defect structure observed by TEM.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1The Properties of Diamond, edited by Field, J. E. (Academic Press, London, 1979).Google Scholar
2Rudder, R.A., Hudson, G.C., Posthill, J.B., Thomas, R.E., Hendry, R.C., Malta, D. P., Markunas, R. J., Humphreys, T. P., and Nemanich, R. J., Appl. Phys. Lett. 60, 329 (1992).CrossRefGoogle Scholar
3Rudder, R.A., Posthill, J.B., Hudson, G.C., Malta, D.P., Thomas, R.E., Markunas, R. J., Humphreys, T. P., and Nemanich, R.J., in Wide Band-Gap Semiconductors, edited by Moustakas, T. D., Pankove, J.I., and Hamakawa, Y. (Mater. Res. Soc. Symp. Proc. 242, Pittsburgh, PA, 1992), p. 23.Google Scholar
4Nemanich, R.J., Glass, J.T., Lucovsky, G., and Shroder, R.E., J. Vac. Sci. Technol. A 6, 1783 (1988).CrossRefGoogle Scholar
5Ramesham, R. and Loo, B.H., J. Electrochem. Soc. 139 (7), 1988 (1992).CrossRefGoogle Scholar
6Sun, Q. and Alam, M., Proc. 2nd Int. Symp. on Diamond Materials, Washington, DC, The Electrochemical Society Proceedings, Vol. 91-8, 463 (1991).Google Scholar
7Sandhu, G. S. and Chu, W. K., Appl. Phys. Lett. 55 (5), 437 (1989).CrossRefGoogle Scholar
8Zhu, W., Wang, X. Hong, Badzian, A., and Messier, R., in New Diamond Science and Technology, edited by Messier, R., Glass, J.T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST-2, Pittsburgh, PA, 1990), p. 812.Google Scholar
9Joshi, A., Nimmagadda, R., and Herrington, J., J. Vac. Sci. Technol. A 8 (3), 2137 (1990).CrossRefGoogle Scholar
10Tankala, K. and DebRoy, T., in New Diamond Science and Technology, edited by Messier, R., Glass, J.T., Butler, J.E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST-2, Pittsburgh, PA, 1990), p. 827.Google Scholar
11Piano, L.S., Yokota, S., and Ravi, K.V., Proc. 1st Int. Symp. on Diamond Materials, Los Angeles, CA, The Electrochemical Society Proceedings, Vol. 89-12, 380 (1989).Google Scholar
12Sato, Y., Hata, C., Ando, T., and Kamo, M., in New Diamond Science and Technology, edited by Messier, R., Glass, J. T., Butler, J. E., and Roy, R. (Mater. Res. Soc. Symp. Int. Proc. NDST-2, Pittsburgh, PA, 1990), p. 537.Google Scholar