Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T18:57:56.007Z Has data issue: false hasContentIssue false

Evaluation of the catalytic activity of oxide nanoparticles synthesized by the polymeric precursor method on biodiesel production

Published online by Cambridge University Press:  13 November 2012

Gabriela Santilli do Nascimento
Affiliation:
Departamento de Química, Universidade Federal de São Carlos, CEP 13.565-905, São Carlos, São Paulo, Brazil
Giovanni Pimenta Mambrini
Affiliation:
Departamento de Química, Universidade Federal de Viçosa, s/n - Campus Universitário, CEP 36570-000, Viçosa, Minas Gerais, Brazil
Elaine Cristina Paris
Affiliation:
Embrapa Instrumentação, CEP 13560-970, São Carlos, São Paulo, Brazil
Juliano Aurelio Peres
Affiliation:
Departamento de Química, Universidade Federal de São Carlos, CEP 13.565-905, São Carlos, São Paulo, Brazil
Luis Alberto Colnago
Affiliation:
Embrapa Instrumentação, CEP 13560-970, São Carlos, São Paulo, Brazil
Caue Ribeiro*
Affiliation:
Embrapa Instrumentação, CEP 13560-970, São Carlos, São Paulo, Brazil
*
a)Address all correspondence to this author. e-mail: caue@cnpdia.embrapa.br
Get access

Abstract

This paper shows a comparison between different nanostructured oxides, obtained by polymeric precursor method, regarding their activity for biodiesel conversion from oil–methanol mixtures. The basicity/acidity and surface area (SA) of the oxides were taken in account to analyze the catalytic activity in the transesterification reaction. The temperature dependence for the heterogeneous catalysts was analyzed, where only CaO showed activities at 70 °C (∼98% of conversion), while the other oxides, SnO2, ZnO, TiO2, CaTiO3, were observed active only at 150 °C for the reaction parameters adopted. The results revealed that the highest activity observed is not associated to SA only but mainly with the surface basicity. This suggest that, for oxides synthesized by the polymeric precursor method, the surface basicity surpasses the particle size effects in catalysis in a way to promote the transesterification reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lang, X., Dalai, A.K., Bakhshi, N.N., Reaney, M.J., and Hertz, P.B.: Preparation and characterization of bio-diesels from various bio-oils. Bioresour. Technol. 80, 53 (2001).CrossRefGoogle ScholarPubMed
Di Serio, M., Tesser, R., Pengmei, L., and Santacesaria, E.: Heterogeneous catalysts for biodiesel production. Energy Fuels 22, 207 (2008).CrossRefGoogle Scholar
Liu, X., Piao, X., Wang, Y., Zhu, S., and He, H.: Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol. Fuel 87, 1076 (2008).CrossRefGoogle Scholar
Granados, M.L., Poves, M.D.Z., Alonso, D.M., Mariscal, R., Galisteo, F.C., Moreno-Tost, R., Santamaría, J., and Fierro, J.L.G.: Biodiesel from sunflower oil by using activated calcium oxide. Appl. Catal., B 73, 317 (2007).CrossRefGoogle Scholar
Almeida, R.M., Noda, L.K., Gonçalves, N.S., Meneghetti, S.M.P., and Meneghetti, M.R.: Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts. Appl. Catal., A 347, 100 (2008).CrossRefGoogle Scholar
Kawashima, A., Matsubara, K., and Honda, K.: Development of heterogeneous base catalysts for biodiesel production. Bioresour. Technol. 99, 3439 (2008).CrossRefGoogle ScholarPubMed
Liu, X., He, H., Wang, Y., Zhu, S., and Piao, X.: Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87, 216 (2008).CrossRefGoogle Scholar
Yoo, S.J., Lee, H., Veriansyah, B., Kim, J., Kim, J.D., and Lee, Y.W.: Synthesis of biodiesel from rapeseed oil using supercritical methanol with metal oxide catalysts. Bioresour. Technol. 101, 8686 (2010).CrossRefGoogle ScholarPubMed
Lam, M.K., Lee, K.T., and Mohamed, A.R.: Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: An optimization study. Appl. Catal., B 93, 134 (2009).CrossRefGoogle Scholar
Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S., and Hidaka, J.: Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87, 2798 (2008).CrossRefGoogle Scholar
Suppes, G.J., Dasari, M.A., Doskocil, E.J., Mankidy, P.K., and Goff, M.J.: Transesterification of soybean oil with zeolite and metal catalysts. Appl. Catal., A 257, 213 (2004).CrossRefGoogle Scholar
Albuquerque, M.C.G., Urbistondo, I.J., González, J.S., Robles, J.M.M., Tost, R.M., Castellón, E.R., López, A.J., Azevedo, D.C.S., Cavalcante, C.L. Jr., and Torres, P.M.: CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Appl. Catal., A 334, 35 (2008).CrossRefGoogle Scholar
Kawashima, A., Matsubara, K., and Honda, K.: Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresour. Technol. 100, 696 (2009).CrossRefGoogle ScholarPubMed
Bancquart, S., Vanhove, C., Pouilloux, Y., and Barrault, J.: Glycerol transesterification with methyl stearate over solid basic catalysts. I. Relationship between activity and basicity. Appl. Catal., A 218, 111 (2001).CrossRefGoogle Scholar
Yan, S., Mohan, S., DiMaggio, C., Kim, M., Ng, K.Y.S., and Salley, S.O.: Long term activity of modified ZnO nanoparticles for transesterification. Fuel 89, 2844 (2010).CrossRefGoogle Scholar
Niederberger, M.: Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc. Chem. Res. 40, 793 (2007).CrossRefGoogle ScholarPubMed
Ngamcharussrivichai, C., Totarat, P., and Bunyakiat, K.: Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Appl. Catal., A 341, 77 (2008).CrossRefGoogle Scholar
Rubio, A.C.A., González, J.S., Robles, J.M.M., Tost, R.M., Alonso, D.M., López, A.J., and Torres, P.M.: Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts. Catal. Today 149, 281 (2010).CrossRefGoogle Scholar
Lakshmi, B.B., Dorhout, P.K., and Martin, C.R.: Sol-gel template synthesis of semiconductor nanostructures. Chem. Mater. 9, 857 (1997).CrossRefGoogle Scholar
Barros, B.S., Barbosa, R., Santos, N.R., Barros, T.S., and Souza, M.A.: Synthesis and x-ray diffraction characterization of nanocrystalline ZnO obtained by Pechini method. Inorg. Mater. 42, 1348 (2006).CrossRefGoogle Scholar
Cavalcante, L.S., Marques, V.S., Sczancoski, J.C., Escote, M.T., Joya, M.R., Varela, J.A., Santos, M.R.M.C., Pizani, P.S., and Longo, E.: Synthesis, structural refinement and optical behavior of CaTiO3 powders: A comparative study of processing in different furnaces. J. Chem. Eng. 143, 299 (2008).CrossRefGoogle Scholar
Malagutti, A.R., Mourão, H.A.J.L., Garbin, J.R., and Ribeiro, C.: Deposition of TiO2 and Ag:TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes. Appl. Catal., B 90, 205 (2009).CrossRefGoogle Scholar
de Macedo, D.A., Cela, B., do Nascimento, R.M., Martinelli, A.E., Melo, D.M.A., Rabelo, A.A., and Paskocimas, C.A.: Synthesis, processing and characterization of ZrO2-8Y2O3, ZrO2-8CeO2 and La0.78Sr0.22MnO3 powders. J. New Mater. Electrochem. Syst. 12, 103 (2009).Google Scholar
Pechini, M.P.: Method of preparing lead and alkaline titanates and niobates and coasting method using the same to form a capacitor. U.S. Patent No. 3330697, July 11, 1967.Google Scholar
Moreira, M.L., Paris, E.C., do Nascimento, G.S., Longo, V.M., Sambrano, J.R., Mastelaro, V.R., Bernardi, M.I.B., Andrés, J., Varela, J.A., and Longo, E.: Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: An experimental and theoretical insight. Acta Mater. 57, 5174 (2009).CrossRefGoogle Scholar
Paris, E.C., Espinosa, J.W.M., de Lazaro, S., Lima, R.C., Joya, M.R., Pizani, P.S., Leite, E.R., Souza, A.G., Varela, J.A., and Longo, E.: Er3+ as marker for order-disorder determination in the PbTiO3 system. Chem. Phys. 335, 7 (2007).CrossRefGoogle Scholar
Mambrini, G.P., Ribeiro, C., and Colnago, L.A.: Nuclear magnetic resonance spectroscopic analysis of ethyl ester yield in the transesterification of vegetable oil: an accurate method for a truly quantitative analysis. Magn. Reson. Chem. 50, 1 (2011).CrossRefGoogle Scholar
Umar, A., Ribeiro, C., Al-Hajry, A., Masuda, Y., and Hahn, Y.B.: Growth of highly c-axis-oriented ZnO nanorods on ZnO/glass substrate: Growth mechanism, structural, and optical properties. J. Phys. Chem. C 113, 14715 (2009).CrossRefGoogle Scholar
Ronconi, C.M., Ribeiro, C., Bulhoes, L.O.S., and Pereira, E.C.: Insights for phase control in TiO2 nanoparticles from polymeric precursors method. J. Alloys Compd. 466, 435 (2008).CrossRefGoogle Scholar
Aboelfetoh, E.F. and Pietschnig, R.: Preparation and catalytic performance of Al2O3, TiO2 and SiO2 supported vanadium based-catalysts for C-H activation. Catal. Lett. 127, 83 (2009).CrossRefGoogle Scholar
Xuejun, L., Huayang, H., Yujun, W., Shenlin, Z., and Xianglan, P.: Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87, 216 (2008).Google Scholar
Morgenstern, M., Cline, J., Meyer, S., and Cataldo, S.: Determination of the kinetics of biodiesel production using proton nuclear magnetic resonance spectroscopy (H-1 NMR). Energy Fuels 20, 1350 (2006).CrossRefGoogle Scholar
Georgogianni, K.G., Kontominas, M.G., Pomonis, P.J., Avlonitis, D., and Gergis, V.: Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Process. Technol. 89, 503 (2008).CrossRefGoogle Scholar
Vicente, G., Martínez, M., and Aracil, J.: Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour. Technol. 92, 297 (2004).CrossRefGoogle ScholarPubMed
Karmee, S.K. and Chadha, A.: Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour. Technol. 96, 1425 (2005).CrossRefGoogle ScholarPubMed
Singh, A.K. and Fernando, S.D.: Transesterification of soybean oil using heterogeneous catalysts. Energy Fuels 22, 2067 (2008).CrossRefGoogle Scholar
Lee, D.W., Park, Y.M., and Lee, K.W.: Heterogeneous base catalysts for transesterification in biodiesel synthesis. Catal. Surv. Asia 13, 63 (2009).CrossRefGoogle Scholar
Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar