Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T06:34:31.551Z Has data issue: false hasContentIssue false

Evaluation of the three-dimensional properties of Kevlar across length scales

Published online by Cambridge University Press:  28 March 2012

Quinn P. McAllister
Affiliation:
Department of Materials Science and Engineering, Center for Composite Materials, University of Delaware, Newark, Delaware 19716
John W. Gillespie Jr*
Affiliation:
Department of Materials Science and Engineering, Center for Composite Materials, University of Delaware, Newark, Delaware 19716
Mark R. VanLandingham
Affiliation:
Weapons & Materials Research Directorate-Materials and Manufacturing Sciences Division, U.S. Army Research Laboratory, ATTN: RDRL-WMM-B, Aberdeen Proving Ground, Maryland 21005-5069
*
a)Address all correspondence to this author. e-mail: gillespi@udel.edu
Get access

Abstract

In this study, nanoindentation was utilized to measure the local, three-dimensional properties of Kevlar 49 and Kevlar KM2 on the length scales of the fiber microstructure. First, atomic force microscopy-based methods were used to explore the extent of property changes with respect to radial position in the fibers’ axial and hoop planes. From these measurements, no significant change in response was found for Kevlar 49 fibers, consistent with transverse isotropy. However, a reduced stiffness “shell” region (up to ∼300–350 nm thick) was observed for KM2 fibers. Instrumented indentation was then used to evaluate fiber response with respect to orientation and contact size and establish a critical contact size above which the response is independent of indenter size (i.e., “homogeneous” behavior). A previously proposed analytical method for indentation of a transversely isotropic material was used to estimate the local material properties of the Kevlar fibers from the measured homogeneous response.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kalman, D.P., Merrill, R.L., Wagner, N.J., and Wetzel, E.D.: Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions. ACS Appl. Mater. Interfaces 1, 2602 (2009).Google Scholar
2.Decker, M.J., Egres, R.G., Wetzel, E.D., and Wagner, N.J.: Low-velocity ballistic properties of shear thickening fluid (STF)-fabric composites, In Proceedings of the 22nd International Symposium on Ballistics: Terminal Ballistics, Flis, W. and Scott, B., eds, Vancouver, Canada, 2005).Google Scholar
3.Decker, M.J., Halbach, C.J, Nam, C.H., Wagner, N.J., and Wetzel, E.D.: Stab resistance of shear thickening fluid (STF)-treated fabrics. Compos. Sci. Technol. 367, 565 (2007).CrossRefGoogle Scholar
4.Riekel, C., Garcia Gutierrez, M.C., Gourrier, A., and Roth, S.: Recent synchrotron radiation microdiffraction experiments on polymer and biopolymer fibers. Anal. Bioanal. Chem. 275, 594 (2003).Google Scholar
5.Riekel, C. and Davies, R.J.: Applications of synchrotron radiationmicrofocus techniques to the study of polymer and biopolymer fibers. Curr. Opin. Colloid Interface Sci. 9, 396 (2005).CrossRefGoogle Scholar
6.Li, S.F.Y., McGhie, A.J., and Tan, S.L.: Comparative study of the internal structures of Kevlar and spider silk by atomic force microscopy. J. Vac. Sci. Technol., A 12, 1891 (1994).CrossRefGoogle Scholar
7.Panar, M., Avakian, P., Blume, R.C., Gardner, K.H., Gierke, T.D., and Yang, H.H.: Morphology of poly(p-phenylene terephthalamide) fibers. J. Polym. Sci. Part B: Polym. Phys. 21, 1955 (1983).Google Scholar
8.Rao, Y., Waddon, A.J., and Farris, R.J.: The evolution of structure and properties in poly(p-phenylene terephthalamide) fibers. Polymer 42, 5925 (2001).CrossRefGoogle Scholar
9.Snetivy, D., Vancso, G.J., and Rutledge, G.C.: Atomic force microscopy of polymer crystals. 6. Molecular imaging and study of polymorphism in poly(p-phenyleneterephthalamide) fibers. Macromolecules 25, 7037 (1992).CrossRefGoogle Scholar
10.Lee, K.G., Barton, R. Jr, and Schultz, J.M.: Structure and property development in poly(p-phenylene terephthalamide) during heat treatment under tension. J. Polym. Sci., Part B: Polym. Phys. 33, 1 (1995).CrossRefGoogle Scholar
11.Cheng, M., Chen, W.N., and Weerasooriya, T.: Mechanical properties of Kevlar® KM2 single fiber. J. Eng. Mater. Technol. 127, 197 (2005).Google Scholar
12.Deteresa, S.J., Allen, S.R., Farris, R.J., and Porter, R.S.: Compressive and torsional behavior of Kevlar 49 fiber. J. Mater. Sci. 19, 57 (1984).CrossRefGoogle Scholar
13.Kawabata, S.: Measurement of the transverse mechanical properties of high-performance fibers. J. Text. Inst. 81, 432 (1990).CrossRefGoogle Scholar
14.Leal, A.A, Deitzel, J.M., and Gillespie, J.W. Jr: Assessment of compressive properties of high-performance organic fibers. Compos. Sci. Technol. 67, 2786 (2007).CrossRefGoogle Scholar
15.Leal, A.A., Deitzel, J.M., and Gillespie, J.W. Jr: Compressive strength analysis for high-performance fibers with different modulus in tension and compression. J. Compos. Mater. 43, 661 (2009).Google Scholar
16.Singletary, J., Davis, H., Ramasubramanian, M.K., Knoff, W., and Toney, M.: The transverse compression of PPTA fibers part II: Fiber transverse structure. J. Mater. Sci. 35, 583 (2000).CrossRefGoogle Scholar
17.Singletary, J., Davis, H., Ramasubramanian, M.K., Knoff, W., and Toney, M.: The transverse compression of PPTA fibers part I: Single fiber transverse compression testing. J. Mater. Sci. 35, 573 (2000).Google Scholar
18.Tsai, C.L. and Daniel, I.M.: Determination of shear modulus of single fibers. Exp. Mech. 39, 284 (1999).CrossRefGoogle Scholar
19.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).Google Scholar
20.McAllister, Q.P., Gillespie, J.W. Jr, and VanLandingham, M.R.: Nonlinear indentation of fibers. J. Mater. Res. 27(1), 197 (2012).CrossRefGoogle Scholar
21.Jakes, J.E. and Stone, D.S.: The edge effect in nanoindentation. Philos. Mag. 91, 1387 (2011).Google Scholar
22.Jakes, J.E., Frihart, C.R., Beecher, J.F., Moon, R.J., and Stone, D.S.: Experimental method to account for structural compliance in nanoindentation measurements. J. Mater. Res. 23, 1113 (2008).CrossRefGoogle Scholar
23.Ebenstein, D.M. and Wahl, K.J.: Anisotropic nanomechanical properties of Nephila clavipes dragline silk. J. Mater. Res. 21, 2035 (2006).Google Scholar
24.Gindl, W. and Schoberl, T.: The significance of the elastic modulus of wood cell walls obtained from nanoindentation measurements. Composites Part A 35, 1345 (2004).Google Scholar
25.Gindl, W., Gupta, H.S., Schoberl, T., Lichtenegger, H.C., and Fratzl, P.: Mechanical properties of spruce wood cell walls by nanoindentation. Appl. Phys. A 79, 2069 (2004).CrossRefGoogle Scholar
26.Delafargue, A. and Ulm, F.J.: Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. Int. J. Solids. Struct. 41, 7351 (2004).Google Scholar
27.Elliot, H.A.: Axially symmetric stress distributions in aeolotropic hexagonal crystals. The problem of the plane and related problems. Math. Proc. Cambridge Philos. Soc. 45, 621 (1949).CrossRefGoogle Scholar
28.Elliot, H.A.: Three dimensional stress distributions in hexagonal aeolotropic crystals. Math. Proc. Cambridge Philos. Soc. 44, 522 (1948).CrossRefGoogle Scholar
29.Hanson, M.T.: The elastic field for conical indentation including sliding friction for transverse isotropy. J. Appl. Mech. 59, S123 (1992).CrossRefGoogle Scholar
30.Hanson, M.T.: The elastic field for spherical Hertzian contact including sliding friction for transverse isotropy. J. Tribol. 114, 606 (1992).CrossRefGoogle Scholar
31.Vlassak, J.J. and Nix, W.D.: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 8, 1223 (1994).CrossRefGoogle Scholar
32.Swadener, J.G. and Pharr, G.M.: Indentation of elastically anisotropic half-spaces by cones and parabola of revolution. Philos. Mag. A 81, 447 (2001).Google Scholar
33.Vlassak, J.J., Ciavarella, M., Barber, J.R., and Wang, X.: The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J. Mech. Phys. Solids 51, 1701 (2003).CrossRefGoogle Scholar
34.Swadener, J.G., Rho, J.Y., and Pharr, G.M.: Effects of anisotropy on elastic modulus measured by nanoindentation in human tibial cortical bone. J. Biomed. Mater. Res. 57, 108 (2001).Google Scholar
35.Languerand, D.L., Zhang, H., Murthy, N.S., Ramesh, K.T., and Sansoz, F.: Inelastic behavior and fracture of high-modulus polymeric fiber bundles at high strain-rates. Mater. Sci. Eng. A 500, 216 (2009).Google Scholar
36.Graham, J.F., McCague, C., Warren, O.L., and Norton, P.R.: Spatially resolved nanomechanical properties of Kevlar ® fibers. Polymer 41, 4761 (2000).CrossRefGoogle Scholar
37.Rabe, U., Janser, K., and Arnold, W.: Vibrations of free and surface coupled atomic force microscope cantilever: Theory and experiment. Rev. Sci. Instrum. 61, 3281 (1996).CrossRefGoogle Scholar
38.Stan, G. and Cook, R.F.: Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy. Nanotechnology 19, 235701 (2008).CrossRefGoogle ScholarPubMed
39.Stan, G., King, S.W., and Cook, R.F.: Elastic modulus of low-k dielectric thin films measured by load-dependent contact-resonance atomic force microscopy. J. Mater. Res. 24, 2960 (2009).Google Scholar
40.Stan, G., Ciobanu, C.V., Parthangal, P.M., and Cook, R.F.: Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett. 7, 3691 (2007).CrossRefGoogle Scholar
41.Stan, G., Ciobanu, C.V., Thayer, T.P., Wang, G.T., Creighton, J.R., Purushotham, K.P., Bendersky, L.A., and Cook, R.F.: Elastic moduli of faceted aluminum nitride nanotubes measured by contact resonance atomic force microscopy. Nanotechnology. 20, 035706 (2009).Google Scholar
42.Stan, G., Krylyuk, S., Davydov, A.V., and Cook, R.F.: Compressive stress effect on the radial elastic modulus of oxidized Si nanowires. Nano Lett. 10, 2031 (2010).Google Scholar
43.VanLandingham, M.R., McKnight, S.H., Palmese, G.R., Eduljee, R.F., Gillespie, J.W. Jr, and McCullough, R.L.: Relating elastic modulus to indentation response using atomic force microscopy. J. Mater. Sci. Lett. 16, 117 (1997).CrossRefGoogle Scholar
44.VanLandingham, M.R., Dagastine, R.R., Eduljee, R.F., McCullough, R.L., and Gillespie, J.W. Jr: Characterization of nanoscale property variations in polymer composite systems: 1. Experimental results. Composites Part A 30, 75 (1999).CrossRefGoogle Scholar
45.VanLandingham, M.R., McKnight, S.H., Palmese, G.R., Elings, J.R., Huang, X., Bogetti, T.A., Eduljee, R.F., and Gillespie, J.W.: Nanoscale indentation of polymer systems using the atomic force microscope. J. Adhes. 64, 31 (1997).CrossRefGoogle Scholar
46.VanLandingham, M.R., Villarrubia, J.S., Guthrie, W.F., and Meyers, G.F.: Nanoindentation of polymers: An overview. Macromol. Symp. 167, 15 (2001).3.0.CO;2-T>CrossRefGoogle Scholar
47.Tan, E.P.S. and Lim, C.T.: Nanoindentation study of nanofibers. Appl. Phys. Lett. 87, 123106 (2005).CrossRefGoogle Scholar
48.Domke, J. and Radmacher, M.: Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14, 3320 (1998).CrossRefGoogle Scholar
49.Li, X., Gao, H., Murphy, C.J., and Caswell, K.K.: Nanoindentation of silver nanowires. Nano Lett. 3, 1495 (2003).CrossRefGoogle Scholar
50.Bischel, M.S., VanLandingham, M.R., Eduljee, R.F., Gillespie, J.W. Jr, and Schultz, J.M.: On the use of nanoscale indentation with the AFM in the identification of phases in blends in linear low density polyethylene and high-density polyethylene. J. Mater. Sci. 35, 221 (2000).Google Scholar
51.Tai, K., Ming, D., Suresh, S., Palazoglu, A., and Ortiz, C.: Nanoscale heterogeneity promotes energy dissipation in bone. Nat. Mater. 6, 454 (2007).Google Scholar
52.XP User’s Manual. V.16. (Agilent Technologies, Santa Clara, CA, 2002).Google Scholar
53.Jones, M.C.G., Lara-Curzio, E., Kopper, A., and Martin, D.C.: The lateral deformation of cross-linkable PPXTA. J. Mater. Sci. 32, 2855 (1997).Google Scholar