Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T21:44:16.009Z Has data issue: false hasContentIssue false

Evaporation-induced self-assembly of capillary cylindrical colloidal crystal in a face-centered cubic structure with controllable thickness

Published online by Cambridge University Press:  14 May 2012

Wenhua Guo
Affiliation:
School of Physical Science and Technology, Nanjing Normal University, Jiangsu Key Lab on Opto-Electronic Technology, Nanjing 210097, China; and Department of Opto-Electronic Information and Engineering, School of Physics and Electronic Engineering, Changshu Institute of Technology, Changshu 215500, China
Ming Wang*
Affiliation:
School of Physical Science and Technology, Nanjing Normal University, Jiangsu Key Lab on Opto-Electronic Technology, Nanjing 210097, China
Wei Xia
Affiliation:
School of Physical Science and Technology, Nanjing Normal University, Jiangsu Key Lab on Opto-Electronic Technology, Nanjing 210097, China
Lihua Dai
Affiliation:
School of Physical Science and Technology, Nanjing Normal University, Jiangsu Key Lab on Opto-Electronic Technology, Nanjing 210097, China
*
a)Address all correspondence to this author. e-mail: wangming@njnu.edu.cn
Get access

Abstract

The fabrication of capillary cylindrical crystals from colloidal suspension with controllable thickness by evaporation-induced self-assembly method has been investigated. The thickness of the hollow cylinders can be precisely controlled ranging from monolayer to tens of layers by varying the suspension concentration. With the increase of suspension concentration, the particles fill completely inside capillaries to form solid bulk crystals and the critical values are found in capillaries with various diameters. Scanning electron microscope images confirm the face-centered-cubic structure in both crystals, but with two different [111] crystalline directions. The experiment parameters, such as the solvent, concentration of the suspension and inner diameter of capillary are studied for the quality and the number of film layers control. Qualitative analysis has been performed to probe into the solvent evaporation modes and the mechanism of particle arrangement inside the capillary.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Joannopoulos, J.D., Johnson, S.G., Winn, J.N., and Meade, R.D.: Photonic Crystals 2nd ed. (Princeton Univ. Press, Princeton, NJ, 2008).Google Scholar
2.Colvin, V.L.: From opals to optics: Colloidal photonic crystals. MRS Bull. 26(8), 637 (2001).CrossRefGoogle Scholar
3.Aguirre, C.I., Reguera, E., and Stein, A.: Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 20(16), 2565 (2010).CrossRefGoogle Scholar
4.Míguez, H., Meseguer, F., López, C., Blanco, A., Moya, J.S., Requena, J., Mifsud, A., and Fornés, V.: Control of the photonic crystal properties of fcc packed submicron SiO2 spheres by sintering. Adv. Mater. 10(6), 480 (1998).3.0.CO;2-Y>CrossRefGoogle Scholar
5.Jiang, P., Bertone, J.F., Hwang, K.S., and Colvin, V.L.: Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11(8), 2132 (1999).CrossRefGoogle Scholar
6.van Blaaderen, A., Ruel, R., and Wiltzius, P.: Template-directed colloidal crystallization. Nature 385(6614), 321 (1997).CrossRefGoogle Scholar
7.Lai, C-H., Huang, Y-J., Wu, P-W., and Chen, L-Y.: Rapid fabrication of cylindrical colloidal crystals and their inverse opals. J. Electrochem. Soc. 157(3), P23 (2010).CrossRefGoogle Scholar
8.Yin, Y.D., Lu, Y., Gates, B., and Xia, Y.N.: Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J. Am. Chem. Soc. 123(36), 8178 (2001).CrossRefGoogle ScholarPubMed
9.Yang, S.M., Míguez, H., and Ozin, G.A.: Opal circuits of light-planarized microphotonic crystal chips. Adv. Funct. Mater. 12(7), 425 (2002).3.0.CO;2-U>CrossRefGoogle Scholar
10.Ye, Y.H., Mayer, T.S., Khoo, I.C., Divliansky, I.B., Abrams, N., and Mallouk, T.E.: Self-assembly of three-dimensional photonic-crystals with air-core line defects. J. Mater. Chem. 12, 3637 (2002).CrossRefGoogle Scholar
11.Ye, Y.H., Badilescu, S., Truong, V.V., Rochon, P., and Natansohn, A.: Self-assembly of colloidal spheres on patterned substrates. Appl. Phys. Lett. 79(6), 872 (2001).CrossRefGoogle Scholar
12.Kang-Hyun, B. and Gopinath, A.: Self-assembled photonic crystal waveguides. IEEE Photonics Technol. Lett. 17(2), 351 (2005).CrossRefGoogle Scholar
13.Míguez, H., Yang, S.M., Tetreault, N., and Ozin, G.A.: Oriented free-standing three-dimensional silicon inverted colloidal photonic crystal microfibers. Adv. Mater. 14(24), 1805 (2002).CrossRefGoogle Scholar
14.Lin, Y., Herman, P.R., Valdivia, C.E., Li, J., Kitaev, V., and Ozin, G.A.: Photonic band structure of colloidal crystal self-assembled in hollow core optical fiber. Appl. Phys. Lett. 86(12), 121106 (2005).CrossRefGoogle Scholar
15.Lin, Y.K., Herman, P.R., and Xu, W.: In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction. J. Appl. Phys. 102(7), 073106 (2007).CrossRefGoogle Scholar
16.Guo, W., Wang, M., Yu, P., and Liu, Q.: Fabrication of 3D colloidal photonic crystals in cavity of optical fiber end face. Chin. Opt. Lett. 8(5), 515 (2010).CrossRefGoogle Scholar
17.Guo, W., Wang, M., Xia, W., and Dai, L.: Pressure and temperature controlled self-assembly of high-quality colloidal crystal films on optical fibers. Opt. Commun. 285(6), 1259 (2012).CrossRefGoogle Scholar
18.Megens, M., van Kats, C.M., Bösecke, P., and Vos, W.L.: In situ characterization of colloidal spheres by synchrotron small-angle x-ray scattering. Langmuir 13(23), 6120 (1997).CrossRefGoogle Scholar
19.Wang, H., Li, X., Nakamura, H., Miyazaki, M., and Maeda, H.: Continuous particle self-arrangement in a long microcapillary. Adv. Mater. 14(22), 1662 (2002).3.0.CO;2-#>CrossRefGoogle Scholar
20.Moon, J.H., Kim, S., Yi, G.R., Lee, Y.H., and Yang, S.M.: Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries. Langmuir 20(5), 2033 (2004).CrossRefGoogle Scholar
21.Liu, G.Q., Liao, Y.B., Liu, Z.M., and Chen, Y.: Characteristic investigation of high quality three-dimensional photonic crystals fabricated by self-assembly: Theory analysis, simulation and measurement. J. Opt. A: Pure Appl. Opt. 10(11), 115202 (2008).CrossRefGoogle Scholar
22.Liu, G.Q., Wang, Z.S., and Ji, Y.H.: Influence of growth parameters on the fabrication of high-quality colloidal crystals via a controlled evaporation self-assembly method. Thin Solid Films 518(18), 5083 (2010).CrossRefGoogle Scholar
23.Chung, Y-W., Leu, I-C., Lee, J-H., and Hon, M-H.: Influence of humidity on the fabrication of high-quality colloidal crystals via a capillary-enhanced process. Langmuir 22(14), 6454 (2006).CrossRefGoogle Scholar
24.Dimitrov, A.S. and Nagayama, K.: Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12(5), 1301 (1996).CrossRefGoogle Scholar
25.Norris, D.J., Arlinghaus, E.G., Meng, L., Heiny, R., and Scriven, L.E.: Opaline photonic crystals: How does self-assembly work? Adv. Mater. 16(16), 1393 (2004).CrossRefGoogle Scholar
26.Shimmin, R.G., DiMauro, A.J., and Braun, P.V.: Slow vertical deposition of colloidal crystals: A Langmuir- Blodgett process? Langmuir 22(15), 6507 (2006).CrossRefGoogle ScholarPubMed
27.Lozano, G. and Míguez, H.: Growth dynamics of self-assembled colloidal crystal thin films. Langmuir 23(20), 9933 (2007).CrossRefGoogle ScholarPubMed
28.Teh, L.K., Tan, N.K., Wong, C.C., and Li, S.: Growth imperfections in three-dimensional colloidal self- assembly. Appl. Phys. A: Mater. Sci. Process. 81(7), 1399 (2005).CrossRefGoogle Scholar
29.Lozano, G. and Míguez, H.: Relation between growth dynamics and the spatial distribution of intrinsic defects in self-assembled colloidal crystal films. Appl. Phys. Lett. 92(9), 091904 (2008).CrossRefGoogle Scholar
30.Lozano, G.S., Dorado, L.A., Depine, R.A., and Míguez, H.: Towards a full understanding of the growth dynamics and optical response of self-assembled photonic colloidal crystal films. J. Mater. Chem. 19(2), 185 (2009).CrossRefGoogle Scholar
31.Bausch, A.R., Bowick, M.J., Cacciuto, A., Dinsmore, A.D., Hsu, M.F., Nelson, D.R., Nikolaides, M.G., Travesset, A., and Weitz, D.A.: Grain boundary scars and spherical crystallography. Science 299(5613), 1716 (2003).CrossRefGoogle ScholarPubMed
32.Míguez, H., Meseguer, F., López, C., Mifsud, A., Moya, J.S., and Vázquez, L.: Evidence of FCC crystallization of SiO2 nanospheres. Langmuir 13(23), 6009 (1997).CrossRefGoogle Scholar
33.Cheng, B., Ni, P., Jin, C., Li, Z., Zhang, D., Dong, P., and Guo, X.: More direct evidence of the fcc arrangement for artificial opal. Opt. Commun. 170(1–3), 41 (1999).CrossRefGoogle Scholar
34.Arlinghaus, E.G.: Microflows, pore and matrix evolution in latex coatings. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 2004.Google Scholar