Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T02:25:26.141Z Has data issue: false hasContentIssue false

Evidence of Co/SiO2 reaction during rapid thermal annealing

Published online by Cambridge University Press:  31 January 2011

Herbert L. Ho
Affiliation:
IBM General Technology Division, Essex Junction, Vermont 05452-4299
Tue Nguyen
Affiliation:
IBM General Technology Division, Essex Junction, Vermont 05452-4299
Julius C. Chang
Affiliation:
IBM General Technology Division, Essex Junction, Vermont 05452-4299
Brian Machesney
Affiliation:
IBM General Technology Division, Essex Junction, Vermont 05452-4299
Peter Geiss
Affiliation:
IBM General Technology Division, Essex Junction, Vermont 05452-4299
Get access

Abstract

Cobalt (Co)/silicon dioxide (SiO2) reactions during rapid thermal annealing (RTA) in an N2 ambient have been investigated. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that islands consisting of Co and the cobalt oxide phase, Co3O4, form during high-temperature anneals (30 s−10 min at 800 °C). After a selective wet etch to remove the islands, groove-like features are produced in the SiO2 layer. The morphologies of the islands and grooves are strikingly similar, which strongly suggest that Co and the underlying SiO2 layer have reacted, most likely to form Co3O4. We propose that small concentrations of O2 are necessary to promote Co/SiO2 interactions.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hove, L. van den, Wolters, R., Maex, K., Dekeersmaecker, R. F., and Declerck, G. J., IEEE Trans. Elec. Dev. ED-34, 554 (1987).Google Scholar
2Liu, R., Williams, D. S., and Lynch, W. T., IEDM Tech. Dig. 58 (1986).Google Scholar
3Pretorius, R., Harris, J. M., and Nicolet, M. A., Solid-State Electron. 21, 667 (1978).CrossRefGoogle Scholar
4Hove, L. van den, Wolters, R., Maex, K., Dekeersmaecker, R., and Declerck, G., J. Vac. Sci. Technol. 134, 1358 (1986).Google Scholar
5JCPDS Card File No. 9–418.Google Scholar
6Swartz, J. C., Gigante, J. R., Costello, J. A., Burnell, D. M., and Ghoshtagore, R. H., J. Elec. Mater. 19, 171 (1990).CrossRefGoogle Scholar
7Morgan, A. E., Broadbent, E. K., Delfino, M., Coulman, B., and Sadana, D. K., J. Electrochem. Soc. 134, 925 (1987).CrossRefGoogle Scholar
8Burte, E.P. and Ye, M., J. Mater. Res. 6, 1892 (1991).CrossRefGoogle Scholar
9Chen, W. D., Cui, Y. D., and Hsu, C. C., J. Appl. Phys. 69, 7612 (1991).Google Scholar
10Berger, H., Microelect. Eng. 10, 259 (1991).CrossRefGoogle Scholar
11Nguyen, T., Ho, H.L., and Chang, J.C., submitted to Appl. Phys. Lett. (1992).Google Scholar
12Rafferty, C. S., Borucki, L., and Dutton, R. W., Appl. Phys. Lett. 54, 1516 (1989).Google Scholar