Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T02:12:28.654Z Has data issue: false hasContentIssue false

Evolution of crystallographic phases in the system (Pb1−xCax)TiO3: A Rietveld study

Published online by Cambridge University Press:  31 January 2011

Amreesh Chandra
Affiliation:
School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi – 221005, India
Dhananjai Pandey
Affiliation:
School of Materials Science and Technology, Institute of Technology, Banaras Hindu University, Varanasi – 221005, India
Get access

Abstract

X-ray powder diffraction studies on (Pb1−xCax)TiO3 ceramic powders revealed the presence of superlattice reflections due to antiphase and inphase tilts of oxygen octahedra for x ≥ 0.421. Rietveld analysis of the powder x-ray diffraction data confirmed that the structure of (Pb1-xCax)TiO3 is orthorhombic with Pbnm space group and aac+ tilt system for x ≥ 0.421. For compositions with 0 < x ≤ 0.416, the structure was tetragonal, and the tetragonality decreased with increasing Ca2+ content.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jaffe, B., Piezoelectric Ceramics (Academic Press, London, U.K., 1971).Google Scholar
Sawaguchi, E., Mitsuma, T., and Ishii, Z., J. Phys. Soc. Jpn. 11, 1298 (1956).CrossRefGoogle Scholar
Sawaguchi, E. and Charters, M.L., J. Am. Ceram. Soc. 42, 157 (1959).CrossRefGoogle Scholar
Nagatsuma, K., Joymura, S., Honozata, , and Takeuchi, H., Jpn. J. Appl. Phys. 20, 33 (1981).CrossRefGoogle Scholar
Ito, Y., Appl. Phys. Lett. 35, 595 (1979).CrossRefGoogle Scholar
Rittenmyer, K.M. and Ting, R.Y., Ferroelectrics 110, 171 (1990).CrossRefGoogle Scholar
Yamamoto, T., Saho, M., Okazaki, K., and Goo, E., Jpn. J. Appl. Phys. 26, 57 (1987).CrossRefGoogle Scholar
Damjanovic, D., Gururaja, T.G., and Cross, L.E., Am. Ceram. Soc. Bull. 66, 699 (1987).Google Scholar
Takahashi, T., Ceram. Bull. 69, 691 (1990).Google Scholar
Mendiola, J., Jimenez, B., Alemany, C., Pardo, L., and Olma, L.D., Ferroelectrics 94, 183 (1989).CrossRefGoogle Scholar
Ranjan, R., Singh, N., Pandey, D., Siruguri, V., Krishna, P.S.R., Paranjpe, S.K., Banerjee, A., Appl. Phys. Lett. 70, 3221 (1997).CrossRefGoogle Scholar
King, G., Goo, E., Yamamoto, T., and Okazaki, K., J. Am. Ceram. Soc. 71, 454 (1988).CrossRefGoogle Scholar
King, G. and Goo, E., J. Am. Ceram. Soc. 73, 1534 (1990).CrossRefGoogle Scholar
Ganesh, R. and Goo, E., J. Am. Ceram. Soc. 80, 653 (1997).CrossRefGoogle Scholar
Eremkin, V.V., Smotrakov, V.G., Shevtsova, S.I., and Kozakov, A.T., Phys Solid State 36, 191 (1994).Google Scholar
Glazer, A.M., Acta Crystallogr. B 28, 3384 (1972).CrossRefGoogle Scholar
Glazer, A.M., Acta Crystallogr. A 31, 756 (1975).CrossRefGoogle Scholar
Redfern, S.A.T., J. Phys. Condens. Matter 8, 8267 (1996).CrossRefGoogle Scholar
Kennedy, B.J., Howard, C.J., and Chakoumakos, B.C., J. Phys. Condens. Matter 11, 1479 (1999).CrossRefGoogle Scholar
Ball, C.J., Begg, B.D., Cookson, D.J., Thorogood, G.J., and Vance, E.R., J. Solid State Chem. 139, 238 (1998).CrossRefGoogle Scholar
Ranjan, R., Pandey, D., Siruguri, V., Krishna, P.S.R., and Paranjpe, S.K., J. Phys. Condens. Matter 11, 2233 (1999).CrossRefGoogle Scholar
Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectric and Related Materials (Clarendon Press, Oxford, U.K., 1977).Google Scholar
Ricote, J., Corker, D.L., Whatmore, R.W., Impey, S.A., Glazer, A.M., Dec, J., and Roleder, K., J. Phys. Condens. Matter 10, 1767 (1998).CrossRefGoogle Scholar
Corker, D.L., Glazer, A.M., Whatmore, R.W., Stallard, A., Fauth, F., J. Phys. Condens. Matter. 10, 6251 (1998).CrossRefGoogle Scholar
Young, R.A., Sakthivel, A., Moss, T.S., and Santos, C.O.P., Program DBWS-9411 for Rietveld Analysis of X-ray and Neutron Powder Diffraction Patterns (School of Physics, Georgia Institute of Technology, Atlanta, GA, 1994).Google Scholar
Koopmans, H.J.A., Velde, G.M. Van De, and Gellings, P.J., Acta. Crystallogr. 39, 1323 (1983).Google Scholar
Ranjan, R., Doctoral Thesis, Banaras Hindu University, Varanasi, India (2001).Google Scholar
Holland, T.J.B. and Redfern, S.A.T., Unit Cell Program, http://www.esc.cam.ac.uk/mineral_sciences/unitcell.html.Google Scholar
Shrout, T.R., Jang, J.P., Kim, N., and Markgraf, S., Ferroelectric Lett. 12, 63 (1990).CrossRefGoogle Scholar
Kuwata, J., Ucino, K., and Nomura, S., Ferroelectrics 37, 579 (1981).CrossRefGoogle Scholar
Arigur, P. and Benguigui, L., J. Phys. D 8, 1856 (1975).CrossRefGoogle Scholar
Kelly, J., Leonard, M., Tantigate, C., and Safari, A., J. Am. Ceram. Soc. 80, 957 (1997).CrossRefGoogle Scholar
Singh, A.P., Pandey, D., Prasad, Ch.D., Mishra, S.K., and Lal, R., J. Mater. Sci. 28, 5050 (1993).CrossRefGoogle Scholar
Singh, A.K. and Pandey, D., J. Phys. Condens. Matter. 13, L931 (2001).CrossRefGoogle Scholar