Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T19:13:15.686Z Has data issue: false hasContentIssue false

Expedient route to volatile zirconium metal-organic chemical vapor deposition precursors using amide synthons and implementation in yttria-stabilized zirconia film growth

Published online by Cambridge University Press:  26 July 2012

John A. Belot
Affiliation:
Department of Chemistry, the Materials Research Center, and the Science and Technology Center for High Temperature Superconductivity, Northwestern University, Evanston, Illinois 60208-3113
Richard J. McNeely
Affiliation:
Department of Chemistry, the Materials Research Center, and the Science and Technology Center for High Temperature Superconductivity, Northwestern University, Evanston, Illinois 60208-3113
Anchuan Wang
Affiliation:
Department of Chemistry, the Materials Research Center, and the Science and Technology Center for High Temperature Superconductivity, Northwestern University, Evanston, Illinois 60208-3113
Charles J. Reedy
Affiliation:
Department of Chemistry, the Materials Research Center, and the Science and Technology Center for High Temperature Superconductivity, Northwestern University, Evanston, Illinois 60208-3113
Tobin J. Marks
Affiliation:
Department of Chemistry, the Materials Research Center, and the Science and Technology Center for High Temperature Superconductivity, Northwestern University, Evanston, Illinois 60208-3113
Glenn P. A. Yap
Affiliation:
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
Arnold L. Rheingold
Affiliation:
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
Get access

Extract

This communication reports rapid, efficient syntheses of the zirconium-organic metal-organic chemical vapor deposition (MOCVD) precursors Zr(acac)4 and Zr(dpm)4 (acac = acetylacetonate; dpm = dipivaloylmethanate) as well as a new, highly volatile, air- and moisture-stable Zr precursor based on a tetradentate Schiff-base ligand, Zr(tfacen)2 (tfacen = bis-trifluoroacetylacetone-ethylenediiminate). The improved one-step synthetic routes employ tetrakis(dimethylamido)zirconium as a common intermediate and represent a major advance over previous methods employing ZrCl4 or diketonate metathesis. Furthermore, Zr(tfacen)2 is shown to be an effective metal-organic precursor for the MOCVD-mediated growth of (100) oriented yttria-stabilized zirconia thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Si, J., Desu, S. B., and Tsai, C. Y., J. Mater. Res. 9, 1721 (1994), and references therein.CrossRefGoogle Scholar
2.Gould, B. J., Povey, I. M., Pemble, M. E., and Flavell, W. R., J. Mater. Chem. 4, 1815 (1994).CrossRefGoogle Scholar
3.Kim, E.T. and Yoon, S. G., Thin Solid Films 227, 7 (1993).CrossRefGoogle Scholar
4.Xue, Z., Vaartstra, B. A., Caulton, K.G., Chisholm, M. H., and Jones, D. L., Eur. J. Solid State Inorg. Chem. 29, 213 (1992).Google Scholar
5.Kao, A. S. and Gorman, G. L., J. Appl. Phys. 67, 3826 (1990).CrossRefGoogle Scholar
6.Heuer, A. H., J. Am. Ceram. Soc. 70, 689 (1987).CrossRefGoogle Scholar
7.Butler, E. P., Mater. Sci. Technol. 1, 417 (1985).Google Scholar
8.Balog, M., Schieber, M., Michman, M., and Patai, S., J. Electrochem. Soc. 126, 1203 (1979).CrossRefGoogle Scholar
9.Tsai, W. C. and Tseng, T. Y., Thin Solid Films 306, 86 (1997).Google Scholar
10.Horita, S., Abe, Y., and Kawada, T., Thin Solid Films 281–282, 28 (1996), and references therein.CrossRefGoogle Scholar
11.Ressler, K. G., Sonnenberg, N., and Cima, M. J., J. Electron. Mater. 25, 35 (1996).CrossRefGoogle Scholar
12.Kim, J. S., Marzouk, H. A., and Reucroft, P. J., Thin Solid Films 254, 33 (1995).CrossRefGoogle Scholar
13.Pulver, M., Wahl, G., Scheytt, H., and Sommer, M., J. Phys. IV 3, 305 (1993).Google Scholar
14.Fork, D. K., Fenner, D. B., Connell, G. A. N., Phillips, J. M., and Geballe, T. H., Appl. Phys. Lett. 57, 1137 (1990).CrossRefGoogle Scholar
15.Kaatz, F. H., Markworth, P. R., Dai, J. Y., Buchholz, D. B., Liu, X., Chudzik, M. P., Belot, J. A., Kannewurf, C. R., Marks, T. J., and Chang, R. P. H., Chem. Vap. Deposition 4, 99 (1998).Google Scholar
16.Li., Y., Machalett, S. F., Linzen, S., and Schmidl, F., J. Mater. Res. 12, 2072 (1997).CrossRefGoogle Scholar
17.Ishii, H., Shingo, S., Harada, S., Hirano, S., Iwata, Y., Hara, T., Yoshida, N., Fujino, K., and Sato, K., Appl. Phys. Lett. 71, 2367 (1997).CrossRefGoogle Scholar
18.Tomaszewski, H., Haemers, J., De Roo, N., Denul, J., and De Gryse, R., Thin Solid Films 293, 67 (1997).CrossRefGoogle Scholar
19.Phillips, J. M., J. Appl. Phys. 79, 1829 (1996), and references therein.CrossRefGoogle Scholar
20.Norton, D. P., Goyal, A., Budai, J. D., Christen, D. K., Kroeger, D. M., Specht, E. D., He, Q., Saffian, B., Paranthaman, M., Klabunde, C. E., Lee, D. F., Sales, B. C., and List, F. A., Science 274, 755 (1996).CrossRefGoogle Scholar
21.Tomaszewski, H., Haemers, J., Denul, J., De Roo, N., and De Gryse, R., Thin Solid Films 287, 104 (1996), and references therein.CrossRefGoogle Scholar
22.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
23.Wu, X. D., Foltyn, S. R., Arendt, P. N., Blumenthal, W. R., Campbell, I. H., Cotton, J. D., Coulter, J. Y., Hults, W. L., Maley, M. P., Safar, H. F., and Smith, J. L., Appl. Phys. Lett. 67, 2397 (1995).CrossRefGoogle Scholar
24.Reade, R. P. and Russo, R. E., Appl. Surf. Sci. 96–98, 726 (1996), and references therein.CrossRefGoogle Scholar
25.Belot, J. A., Hinds, B. J., Chen, J., Wang, Y. Y., Dravid, V., and Marks, T. J., Chem. Vap. Deposition 3, 78 (1997), and references therein.CrossRefGoogle Scholar
26.Leedham, T. J., Mat. Res. Soc. Symp. Proc. 415, 79 (1996).CrossRefGoogle Scholar
27.Herrmann, W.A., Hubert, N. W., and Runte, O., Angew. Chem. Int. Ed. Engl. 34, 2187 (1995).CrossRefGoogle Scholar
28.Marks, T. J., Pure. Appl. Chem. 67, 313 (1995).CrossRefGoogle Scholar
29.Schulz, D. L. and Marks, T. J., Adv. Mater. 6, 719 (1994).CrossRefGoogle Scholar
30. Commercially available from STREM Chemical Company, New-buryport, MA 01950.Google Scholar
31.Bradley, D. C., Hursthouse, M. B., Rendall, I. F., J. Chem. Soc., Chem. Commun., 368 (1970).CrossRefGoogle Scholar
32.Corazza, F., Solari, E., Floriani, C., Chiesi-Villa, A., and Guastini, C., J. Chem. Soc., Dalton Trans., 1335 (1990).CrossRefGoogle Scholar
33.Bastianini, A., Battiston, G. A., Benetollo, F., Gerbasi, R., and Porchia, M., Polyhedron 16, 1105 (1997).CrossRefGoogle Scholar
34.Archer, R. D., Day, R. O., and Illingsworth, M. L., Inorg. Chem. 18, 2908 (1979).CrossRefGoogle Scholar
35. Synthesis of the protonated ligand analogue: Liu, H. Y., Scharbert, B., and Holm, R. H., J. Am. Chem. Soc. 113, 9529 (1991), and references therein.CrossRefGoogle Scholar
36.Hinds, B. J., McNeely, R. J., Studebaker, D. B., Marks, T. J., Hogan, T. P., Schindler, J. L., Kannewurf, C. R., Zhang, X. F., and Miller, D. J., J. Mater. Res. 12, 1214 (1997).CrossRefGoogle Scholar
37.Rappoli, B. J. and DeSisto, W. J., Appl. Phys. Lett. 68, 2726 (1996).CrossRefGoogle Scholar
38.Schmader, F., Huber, R., Oetzmann, H., and Wahl, G., Appl. Surf. Sci. 46, 53 (1990).Google Scholar
39.JCPDS, Powder Diffraction Files-Inorganic Phases, Center for Diffraction Data, Swathmore, PA (1994).Google Scholar
40.Mizushima, Y. and Hirabayashi, I., J. Mater. Res. 11, 2698 (1996).Google Scholar
41.Watson, I. M., Atwood, M. P., Cardwell, D. A., and Cumberbatch, T. J., J. Mater. Chem. 4, 1393 (1994).CrossRefGoogle Scholar
42.Tonge, L. M., Richeson, D. S., Marks, T. J., Zhao, J., Zhang, J., Wessels, B. W., Marcy, H.O., and Kannewurf, C. R., Adv. Chem. Ser. 226, 351 (1990).CrossRefGoogle Scholar