Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T00:14:17.142Z Has data issue: false hasContentIssue false

Fabrication and characteristics of solar-driven phase change microcapsules with crystalline TiO2/CuS hybrid shell for solar energy conversion and storage

Published online by Cambridge University Press:  15 July 2020

Xiaoyue Fan
Affiliation:
Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi214122, China
Xiaolin Qiu*
Affiliation:
Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi214122, China
Lixin Lu
Affiliation:
Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi214122, China
Binglin Zhou
Affiliation:
Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi214122, China
*
a)Address all correspondence to this author. e-mail: xiaolinqiu2005@126.com
Get access

Abstract

To advance the utilization of solar thermal energy, a novel solar-driven microcapsule was designed by the combination of high-performance CuS nanoconverter and the microencapsulated n-Eicosane with a brookite TiO2 shell via in situ sol–gel method. The resultant n-Eicosane@TiO2/CuS microcapsules possessed excellent thermal properties with high latent heat density (171.7 J/g), high encapsulation efficiency (71.7%), and increased thermal conductivity (0.730 W/(m K)). SEM analysis clearly verified that CuS nanoparticles exhibited a uniform distribution on the surfaces. Most of all, the addition of CuS not only enlarged the absorption spectra from the UV to the visible and NIR region but also achieved high solar-to-thermal conversion efficiency (94.41%). Due to the high heat storage capability and solar irradiation utilization efficiency, this solar-driven microcapsule possesses great potential for the solar energy utilization.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mukrimin Sevket, G. and Tepe, Y.: Classification and assessment of energy storage systems. Renew. Sustain. Energy Rev. 75, 11871197 (2017).Google Scholar
Sharma, A., Tyagi, V.V., Chen, C.R., and Buddhi, D.: Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318345 (2009).CrossRefGoogle Scholar
Zhang, N., Yuan, Y.P., Cao, X.L., Du, Y.X., Zhang, Z.L., and Gui, Y.W.: Latent heat thermal energy storage systems with solid-liquid phase change materials: A review. Adv. Eng. Mater. 20 (2018).10.1002/adem.201700753CrossRefGoogle Scholar
Kant, K., Shukla, A., and Sharma, A.: Advancement in phase change materials for thermal energy storage applications. Sol. Energy Mater. Sol. Cells 172, 8292 (2017).10.1016/j.solmat.2017.07.023CrossRefGoogle Scholar
Sami, S., Sadrameli, S.M., and Etesami, N.: Thermal properties optimization of microencapsulated a renewable and non-toxic phase change material with a polystyrene shell for thermal energy storage systems. Appl. Therm. Eng. 130, 14161424 (2018).CrossRefGoogle Scholar
Du, X.S., Wang, S., Du, Z.L., Cheng, X., and Wang, H.B.: Preparation and characterization of flame-retardant nanoencapsulated phase change materials with poly(methylmethacrylate) shells for thermal energy storage. J. Mater. Chem. A 6, 1751917529 (2018).CrossRefGoogle Scholar
Qu, L.J., Li, A.M., Gu, J.J., and Zhang, C.L.: Thermal energy storage capability of polyurethane foams incorporated with microencapsulated phase change material. ChemistrySelect 3, 31803186 (2018).CrossRefGoogle Scholar
Liu, H., Wang, X.D., Wu, D.Z., and Ji, S.: Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation. Energy 172, 599617 (2019).10.1016/j.energy.2019.01.151CrossRefGoogle Scholar
Sun, K., Liu, H., Wang, X.D., and Wu, D.Z.: Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell. Appl. Energy 237, 549565 (2019).CrossRefGoogle Scholar
Tahan Latibari, S., Mehrali, M., Mahlia, T.M.I., and Metselaar, H.S.C.: Fabrication and performances of microencapsulated palmitic acid with enhanced thermal properties. Energy Fuels 29, 10101018 (2015).CrossRefGoogle Scholar
Yu, S.Y., Wang, X.D., and Wu, D.Z.: Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation. Appl. Energy 114, 632643 (2014).CrossRefGoogle Scholar
Gao, F.X., Wang, X.D., and Wu, D.Z.: Design and fabrication of bifunctional microcapsules for solar thermal energy storage and solar photocatalysis by encapsulating paraffin phase change material into cuprous oxide. Sol. Energy Mater. Sol. Cells 168, 146164 (2017).CrossRefGoogle Scholar
Zhang, Y., Wang, X.D., and Wu, D.Z.: Microencapsulation of n-dodecane into zirconia shell doped with rare earth: Design and synthesis of bifunctional microcapsules for photoluminescence enhancement and thermal energy storage. Energy 97, 113126 (2016).CrossRefGoogle Scholar
Li, F.N., Wang, X., and Wu, D.: Fabrication of multifunctional microcapsules containing n-eicosane core and zinc oxide shell for low-temperature energy storage, photocatalysis, and antibiosis. Energy Convers. Manage. 106, 873885 (2015).CrossRefGoogle Scholar
Sun, N. and Xiao, Z.G.: Synthesis and performances of phase change materials microcapsules with a polymer/BN/TiO2 hybrid shell for thermal energy storage. Energy Fuels 31, 1018610195 (2017).CrossRefGoogle Scholar
Wang, H., Zhao, L., Song, G., Tang, G., and Shi, X.H.: Organic-inorganic hybrid shell microencapsulated phase change materials prepared from SiO2/tic-stabilized pickering emulsion polymerization. Sol. Energy Mater. Sol. Cells 175, 102110 (2018).CrossRefGoogle Scholar
Liu, H., Wang, X., and Wu, D.: Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: A review. Sustain. Energy Fuels 3, 10911149 (2019).10.1039/C9SE00019DCrossRefGoogle Scholar
Fei, B., Lu, H., Qi, K., Shi, H., Liu, T., and Li, X.: Multi-functional microcapsules produced by aerosol reaction. J. Aerosol. Sci. 39, 10891098 (2008).CrossRefGoogle Scholar
Chai, L.X., Wang, X.D., and Wu, D.: Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness. Appl. Energy 138, 661674 (2015).CrossRefGoogle Scholar
Tang, B.T., Wei, H.P., Zhao, D.F., and Zhang, S.F.: Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping. Sol. Energy Mater. Sol. Cells 161, 183189 (2017).CrossRefGoogle Scholar
Liu, H., Wang, X.D., and Wu, D.Z.: Fabrication of graphene/TiO2/paraffin composite phase change materials for enhancement of solar energy efficiency in photocatalysis and latent heat storage. ACS Sustain. Chem. Eng. 5, 49064915 (2017).CrossRefGoogle Scholar
Ma, X.C., Liu, Y.J., Liu, H., Zhang, L., Xu, B., and Xiao, F.: Fabrication of novel slurry containing graphene oxide-modified microencapsulated phase change material for direct absorption solar collector. Sol. Energy Mater. Sol. Cells 188, 7380 (2018).CrossRefGoogle Scholar
Yuan, K.j., Wang, H.C., Liu, J., Fang, X.M., and Zhang, Z.G.: Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance. Sol. Energy Mater. Sol. Cells 143, 2937 (2015).CrossRefGoogle Scholar
Chen, Y.F., Zhang, Q., Wen, X.Y., Yin, H.B., and Liu, J.: A novel CNT encapsulated phase change material with enhanced thermal conductivity and photo-thermal conversion performance. Sol. Energy Mater. Sol. Cells 184, 8290 (2018).CrossRefGoogle Scholar
Huang, Y.F., Zhang, H., Wan, X.J., Chen, D.Z., Chen, X.F., Ye, X., Ouyang, X., Qin, S.Y., Wen, H.X., and Tang, J.X.: Carbon nanotube-enhanced double-walled phase-change microcapsules for thermal energy storage. J. Mater. Chem. A 5, 74827493 (2017).CrossRefGoogle Scholar
Sarı, A., Al-Ahmed, A., Bicer, A., Al-Sulaiman, F.A., and Hekimoğlu, G.: Investigation of thermal properties and enhanced energy storage/release performance of silica fume/myristic acid composite doped with carbon nanotubes. Renew. Energy 140, 779788 (2019).CrossRefGoogle Scholar
Liu, Z.F., Chen, Z.H., and Yu, F.: Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler. Sol. Energy Mater. Sol. Cells 192, 7280 (2018).10.1016/j.solmat.2018.12.014CrossRefGoogle Scholar
D'Souza, L.P., Muralikrishna, S., Chandan, H.R., Ramakrishnappa, T., and Balakrishna, R.G.: Neodymium doped titania as photoanode and graphene oxide–CuS composite as counter electrode material in quantum dot solar cell. J. Mater. Res. 30, 32413251 (2015).CrossRefGoogle Scholar
Wang, J., Li, Y.Y., Deng, L., Wei, N.N., Weng, Y.K., Dong, S., Qi, D.P., Qiu, J., Chen, X.D., and Wu, T.: High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 1603730-6 (2016).Google Scholar
Zhang, Y., Wang, J.S., Qiu, J.J., Jin, X., Umair, M.M., Lu, R.W., Zhang, S.F., and Tang, B.T.: Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity. Appl. Energy 237, 8390 (2019).CrossRefGoogle Scholar
Zhang, Y., Li, X.Y., Li, J.Q., Ma, C.Y., Guo, L.J., and Meng, X.M.: Solar-driven phase change microencapsulation with efficient Ti4O7 nanoconverter for latent heat storage. Nano Energy 53, 579586 (2018).CrossRefGoogle Scholar
Liu, H., Wang, X.D., and Wu, D.Z.: Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage. Appl. Therm. Eng. 134, 603614 (2018).CrossRefGoogle Scholar
Wang, F.F., Huang, Y.J., Chai, Z.G., Zeng, M., Li, Q., Wang, Y., and Xu, D.S.: Photothermal-enhanced catalysis in core–shell plasmonic hierarchical Cu7S4 microsphere@zeolitic imidazole framework-8. Chem. Sci. 7, 68876893 (2016).CrossRefGoogle ScholarPubMed
Wang, X., Wang, F., Sang, Y., and Liu, H.: Full-spectrum solar-light-activated photocatalysts for light-chemical energy conversion. Adv. Energy Mater. 7 (2017). doi:10.1002/aenm.201700473.CrossRefGoogle Scholar
Wang, L., Liu, X.X., Dang, Y.L., Xie, H.Q., Zhao, Q., and Ye, L.Q.: Enhanced solar induced photo-thermal synergistic catalytic CO2 conversion by photothermal material decorated TiO2. Solid State Sci. 89, 6773 (2019).CrossRefGoogle Scholar
Marin, R., Skripka, A., Besteiro, L.V., Benayas, A., Wang, Z.M., Govorov, A.O., Canton, P., and Vetrone, F.: Highly efficient copper sulfide-based near-Infrared photothermal agents: Exploring the limits of macroscopic heat conversion. Small 14, 1803282-9 (2018).Google ScholarPubMed
Ayodhya, D. and Veerabhadram, G.: Investigation of temperature and frequency dependence of electrical conductivity and dielectric behavior in CuS and rGO capped CuS nanocomposites. Mater. Res. Express 6, 045910 (2019).CrossRefGoogle Scholar
Li, Y., Lu, W., Huang, Q., Li, C., and Chen, W.: Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 5, 11611171 (2010).CrossRefGoogle ScholarPubMed
Khanchandani, S., Kumar, S., and Ganguli, A.K.: Comparative study of TiO2/CuS core/shell and composite nanostructures for efficient visible light photocatalysis. ACS Sustain. Chem. Eng. 4, 14871499 (2015).CrossRefGoogle Scholar
Tang, Y.F., Chai, Y., Liu, X.Q., Li, L.L., Yang, L.W., Liu, P.P., Zhou, Y.M., Ju, H.X., and Cheng, Y.Z.: A photoelectrochemical aptasensor constructed with core-shell CuS-TiO2, heterostructure for detection of microcystin-LR. Biosens. Bioelectron. 117, 224231 (2018).CrossRefGoogle ScholarPubMed
Li, H.R., Tian, J.Y., Zhu, Z.G., Cui, F.Y., Zhu, Y.A., Duan, X.G., and Wang, S.B.: Magnetic nitrogen-doped nanocarbons for enhanced metal-free catalytic oxidation: Integrated experimental and theoretical investigations for mechanism and application. Chem. Eng. J. 354, 507516 (2018).10.1016/j.cej.2018.08.043CrossRefGoogle Scholar
Kang, J., Duan, X.G., Wang, C., Sun, H.Q., Tan, X.Y., Tade, M., and Wang, S.B.: Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability. Chem. Eng. J. 332, 398408 (2018).CrossRefGoogle Scholar
Zhao, Y.X., Pan, H.C., Lou, Y.B., Qiu, X.F., Zhu, J.J., and Burda, C.: Plasmonic Cu2-xS nanocrystals: Optical and structural properties of copper-deficient copper(I) sulfides. J. Am. Chem. Soc. 131, 42534261 (2009).CrossRefGoogle Scholar
Jiang, B.B., Wang, X.D., and Wu, D.Z.: Fabrication of microencapsulated phase change materials with TiO2/Fe3O4 hybrid shell as thermoregulatory enzyme carriers: A novel design of applied energy microsystem for bioapplications. Appl. Energy 201, 2033 (2017).CrossRefGoogle Scholar
Niu, J.F., Liu, H., Wang, X.D., and Wu, D.Z.: Molecularly imprinted phase-change microcapsule system for bifunctional applications in waste heat recovery and targeted pollutant removal. ACS Appl. Mater. Interfaces 11, 3764437664 (2019).CrossRefGoogle ScholarPubMed
Li, Y., Zhao, L., Wang, H., and Li, B.H.: Synthesis of novel shape-stabilized phase change materials with high latent heat and low supercooling degree for thermal energy storage. J. Mater. Res. 34, 32633270 (2019).CrossRefGoogle Scholar
Li, M., Liu, J., and Shi, J.: Synthesis and properties of phase change microcapsule with SiO2-TiO2 hybrid shell. Sol. Energy 167, 158164 (2018).CrossRefGoogle Scholar
Liu, H., Wang, X.D., Wu, D.Z., and Ji, S.F.: Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness. Sol. Energy Mater. Sol. Cells 193, 184197 (2019).CrossRefGoogle Scholar
Acevedo-Peña, P., Lartundo-Rojas, L., and González, I.: Effect of water and fluoride content on morphology and barrier layer properties of TiO2 nanotubes grown in ethylene glycol-based electrolytes. J. Solid State Electrochem. 17, 29392947 (2013).CrossRefGoogle Scholar
Schieke, S.M., Schroeder, P., and Krutmann, J.: Cutaneous effects of infrared radiation: From clinical observations to molecular response mechanisms. Photodermatol. Photoimmunol. Photomed. 19, 228–34 (2003).CrossRefGoogle ScholarPubMed
Piazena, H. and Kelleher, D.K.: Effects of infrared-A irradiation on skin: Discrepancies in published data high- light the need for an exact consideration of physical and photobiological laws and appropriate experimental settings. Photochem. Photobiol. 86, 687705 (2010).CrossRefGoogle Scholar
Zhao, Q.H., He, F.F., Zhang, Q.P., Fan, J.H., He, R., Zhang, K., Yan, H.j., and Yang, W.B.: Microencapsulated phase change materials based on graphene Pickering emulsion for light-to-thermal energy conversion and management. Sol. Energy Mater. Sol. Cells 203, 110204 (2019).CrossRefGoogle Scholar
Zhou, Y., Liu, X.D., Sheng, D.K., Lin, C.H., Ji, F., Dong, L., Xu, S.B., Wu, H.H., and Yang, Y.M.: Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage. Chem. Eng. J. 338, 117125 (2018).CrossRefGoogle Scholar
Supplementary material: File

Fan et al. supplementary material

Table S1

Download Fan et al. supplementary material(File)
File 19 KB