Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T00:55:00.109Z Has data issue: false hasContentIssue false

Fabrication and characteristics of weak links between â- and ĉ-axis normal grains of Y1Ba2Cu3O7−x

Published online by Cambridge University Press:  31 January 2011

S. Mahajan
Affiliation:
Department of Material Science and Engineering, Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208–3108
D. B. Buchholz
Affiliation:
Department of Material Science and Engineering, Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208–3108
J. Lei
Affiliation:
Department of Material Science and Engineering, Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208–3108
R. P. H. Chang
Affiliation:
Department of Material Science and Engineering, Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208–3108
T. Hogan
Affiliation:
Department of Electrical Engineering and Computer Science, Science and Technology Center for Superconductivity, Evanston, Illinois 60208–3108
C. R. Kannewurf
Affiliation:
Department of Electrical Engineering and Computer Science, Science and Technology Center for Superconductivity, Evanston, Illinois 60208–3108
S. N. Song
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208–3108
J. B. Ketterson
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208–3108
B. Hinds
Affiliation:
Department of Chemistry, Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208–3108
T. J. Marks
Affiliation:
Department of Chemistry, Science and Technology Center for Superconductivity, Northwestern University, Evanston, Illinois 60208–3108
J. Eckstein
Affiliation:
Varian Associates, Palo Alto, California 94304
Get access

Abstract

We have used pulsed organometallic beam epitaxy (POMBE) to simultaneously deposit â- and ĉ-axis oriented Y1Ba2Cu3O7−x (YBCO) thin films at arbitrary locations on LaAlO3(100) substrates. Using photolithography and ion milling, several types of â-ĉ weak links have been fabricated at the boundary between the two films. The current-voltage (I-V) characteristics show a flux flow type behavior. The resistive transitions are broad and the critical current density is low, indicating weak coupling across these boundaries. With magnetic field applied parallel to the grain boundary plane, nonhysteretic I-V curves are obtained and the critical current goes to zero at an applied magnetic field of ∼7500 G.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chaudhari, P., Mannhart, J., Dimos, D., Tsuei, C. C., Chi, J., Oprysko, M.M., and Scheuermann, M., Phys. Rev. Lett. 60 (16), 16531656 (1988).CrossRefGoogle Scholar
2.Lathrop, D. K., Moeckly, B.H., Russek, S. E., and Burhman, R.A., Appl. Phys. Lett. 58 (10), 10951097 (1991).CrossRefGoogle Scholar
3.Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F.K., Phys. Rev. Lett. 61 (2), 219222 (1988).CrossRefGoogle Scholar
4.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41 (7), 40384049 (1990).CrossRefGoogle Scholar
5.Gross, R., Chaudhari, P., Kawasaki, M., and Gupta, A., IEEE Trans. Mag. 27 (2), 32273230 (1991).CrossRefGoogle Scholar
6.Simon, R. W., Bulman, J.B., Burch, J.F., Coons, S.B., Daly, K. P., Dozier, W. D., Hu, R., Lee, A.E., Luine, J.A., Platt, D.E., Schwarzbek, S.M., Wire, M.S., and Zani, M. J., IEEE Trans. Mag. 27 (2), 32093214 (1991).CrossRefGoogle Scholar
7.Missert, N., Harvey, T.E., Ono, R. H., and Reintsema, C. D., Appl. Phys. Lett. 63 (12), 16901692 (1993).CrossRefGoogle Scholar
8.Char, K., Colclough, M. S., Garrison, S. M., Newman, N., and Zaharchuk, G., Appl. Phys. Lett. 59 (6), 733735 (1991).CrossRefGoogle Scholar
9.Moeckly, B. H. and Buhrman, R.A., Appl. Phys. Lett. 65 (24), 31263128 (1994).CrossRefGoogle Scholar
10.Mukaida, M. and Miyazawa, S., J. Appl. Phys. 74 (2), 12091212 (1993).CrossRefGoogle Scholar
11.Hontsu, S., Mukai, N., Ishii, J., Kawai, T., and Kawai, S., Appl. Phys. Lett. 61 (9), 11341136 (1992).CrossRefGoogle Scholar
12.Ushida, T., Higa, H., Higashiyama, K., Hirabayashi, I., and Tanaka, S., Physica C 185–189, 19711972 (1991).CrossRefGoogle Scholar
13.Inam, A., Rogers, C.T., Ramesh, R., Pemsching, K., Farrow, L., Hart, D., Venkatesan, T., and Wilkows, B., Appl. Phys. Lett. 57 (23), 24822486 (1990).CrossRefGoogle Scholar
14.Nakamura, O., Guimpel, J., Sharifi, F., Dynes, R.C., and Schuller, I.K., Appl. Phys. Lett. 61 (21), 2598–2560 (1992).CrossRefGoogle Scholar
15.Mahajan, S., Ito, W., Yoshida, Y., and Morishita, T., Physica C 213, 445454 (1993).CrossRefGoogle Scholar
16.Duray, S. J., Buchholz, D. G., Song, S. N., Richeson, D. S., Ketterson, J.B., Marks, T. J., and Chang, R. P. H., Appl. Phys. Lett. 59 (12), 15031505 (1991).CrossRefGoogle Scholar
17.Buchholz, D. B., Duray, S. J., Schulz, D. L., Marks, T. J., Ketterson, J.B., and Chang, R. P. H., Mat. Chem. Phys. 36, 377381 (1994).CrossRefGoogle Scholar
18.Gross, R., Chaudhari, P., Kawasaki, M., and Gupta, A., Phys. Rev. B 42 (16), 10 735–10 737 (1990).CrossRefGoogle Scholar
19.Däumling, M., Sarnelli, E., Chaudhari, P., Gupta, A., and Lacey, J., Appl. Phys. Lett. 61 (11), 13551357 (1992).CrossRefGoogle Scholar
20.Froehlich, O. M., Schulze, H., Beck, A., Mayer, B., Alff, L., Gross, R., and Huebener, R. P., Appl. Phys. Lett. 66 (17), 22892291 (1995).CrossRefGoogle Scholar