Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T02:26:55.376Z Has data issue: false hasContentIssue false

Fabrication and optical characterizations of gold nanoshell opal

Published online by Cambridge University Press:  03 March 2011

Jin Hyoung Lee
Affiliation:
Department of Electrical and Computer Engineering, University of Colorado, Boulder, Colorado 80309
Qi Wu
Affiliation:
Department of Electrical and Computer Engineering, University of Colorado, Boulder, Colorado 80309
Wounjhang Park*
Affiliation:
Department of Electrical and Computer Engineering, University of Colorado, Boulder, Colorado 80309
*
a) Address all correspondence to this author. e-mail: won.park@colorado.edu
Get access

Abstract

We fabricated three-dimensional photonic crystals by self-assembling gold nanoshells via forced sedimentation method. Gold nanoshells with a diameter of 458 nm (418-nm silica core and 20-nm gold shell) were synthesized and self-assembled into a 5-μm-thick opal structure. We observed reflection peaks at 710 and 1240 nm, which are believed to be from the complete three-dimensional photonic band gap and the (111) directional gap, respectively. Theses results were in good agreement with the photonic band-structure calculations done by the finite-difference time-domain method. Angle-resolved reflectivity measurements were also performed to investigate the existence of the complete three-dimensional photonic band gap.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: Photonic crystals: Putting a new twist on light. Nature 386, 143 (1997).CrossRefGoogle Scholar
2.Akahane, Y., Asano, T., Song, B.S., Noda, S.: High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944 (2003).CrossRefGoogle Scholar
3.Ryu, H.Y., Kwon, S.H., Lee, Y.J., Lee, Y.H., Kim, J.S.: Very-low-threshold photonic band edge lasers from free-standing triangular photonic crystal slabs. Appl. Phys. Lett. 80, 3476 (2002).CrossRefGoogle Scholar
4.Fleming, J.G., Lin, S.Y., El-Kady, I., Biswas, R., Ho, K.M.: All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 417, 52 (2002).CrossRefGoogle ScholarPubMed
5.Qi, M., Lidorikis, E., Rakich, P.T., Johnson, S.G., Joannopoulos, J.D., Ippen, E.P., Smith, H.I.: A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538 (2004).CrossRefGoogle ScholarPubMed
6.Vlasov, Y.A., Bo, X.Z., Sturm, J.C., Norris, D.J.: On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289 (2001).CrossRefGoogle ScholarPubMed
7.Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S.W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O., van Driel, H.M.: Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437 (2000).CrossRefGoogle ScholarPubMed
8.Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G., Turberfield, A.J.: Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53 (2000).CrossRefGoogle ScholarPubMed
9.Wang, Z., Chan, C.T., Zhang, W., Ming, N., Sheng, P.: Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency. Phys. Rev. B 64, 113108 (2001).CrossRefGoogle Scholar
10.Oldenburg, S.J., Averitt, R.D., Westcott, S.L., Halas, N.J.: Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243 (1998).CrossRefGoogle Scholar
11.Prodan, E., Radloff, C., Halas, N.J., Nordlander, P.: A hybridization model for the plasmon response of complex nanostructures. Science 302, 419 (2003).CrossRefGoogle ScholarPubMed
12.Graf, C., van Blaaderen, A.: Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 18, 524 (2002).CrossRefGoogle Scholar
13.Miclea, P.T., Susha, A.S., Liang, Z., Caruso, F., Torres, C.M. Sotomayor, Romanov, S.G.: Reflectivity behavior of opals of gold nanoparticle coated spheres. Appl. Phys. Lett. 84, 3960 (2004).CrossRefGoogle Scholar
14.Liang, Z., Susha, A., Caruso, F.: Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof. Chem. Mater. 15, 3176 (2003).CrossRefGoogle Scholar
15.Stöber, W., Fink, A.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
16.Duff, D.G., Baiker, A.: A new hydrosol of gold clusters. I. Formation and particle size variation. Langmuir 9, 2301 (1993).CrossRefGoogle Scholar
17.Park, S.H., Xia, Y.: Assembly of mesoscale particles over large areas and its application in fabricating tunable optical filters. Langmuir 15, 266 (1999).CrossRefGoogle Scholar
18.Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH & Co, KgaA, Weinheim, 1998).CrossRefGoogle Scholar
19.Jiang, Y., Whitehouse, C., Li, J., Tam, W.Y., Chan, C.T., Sheng, P.: Optical properties of metallo-dielectric microspheres in opal structures. J. Phys: Condens. Matter 15, 5871 (2003).Google Scholar
20.Mishchenko, M.I., Mackowski, D.W.: Light scattering by randomly oriented bispheres. Opt. Lett. 19, 1604 (1994).CrossRefGoogle ScholarPubMed