Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T06:10:29.047Z Has data issue: false hasContentIssue false

Fabrication and photoluminescence properties of core-shell structured spherical SiO2@Gd2Ti2O7:Eu3+ phosphors

Published online by Cambridge University Press:  03 March 2011

Guangzhi Li
Affiliation:
Department of Chemistry, Northeast Normal University, Changchun 130024, People’s Republic of China; and Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
Min Yu
Affiliation:
Department of Chemistry, Northeast Normal University, Changchun 130024, People’s Republic of China
Rongshun Wang*
Affiliation:
Department of Chemistry, Northeast Normal University, Changchun 130024, People’s Republic of China
Zhenling Wang
Affiliation:
Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
Zewei Quan
Affiliation:
Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
Jun Lin
Affiliation:
Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
*
a) Address all correspondence to these authors. e-mail: wangrs@nenu.edu.cn
Get access

Abstract

A sol-gel technique was used to prepare Gd2Ti2O7:Eu3+-coated submicron silica spheres (SiO2@Gd2Ti2O7:Eu3+). The resulted SiO2@Gd2Ti2O7:Eu3+ core-shell particles were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive x-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, as well as kinetic decays. The XRD results demonstrate that the Gd2Ti2O7:Eu3+ layers begin to crystallize on the SiO2 spheres after annealing at 800 °C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ∼620 nm), non-agglomeration, and smooth surface. The thickness of the Gd2Ti2O7:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (60 nm for four deposition cycles). Under the irradiation of 310 nm ultraviolet, the SiO2@Gd2Ti2O7:Eu3+ samples show strong emission of Eu3+. For the samples annealed from 600 to 800 °C, the emission is dominated by 613 nm red emission ascribed to 5D07F2 transition of Eu3+, while for those annealed from 900 to 1000 °C, the emission is dominated by 588 nm orange emission due to 5D07F1 transition of Eu3+. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Plaza, R.C., Duran, J.D.G., Quirantes, A., Ariza, M.J., and Delgado, A.V.: Surface chemical analysis and electrokinetic properties of spherical hematite particles coated with yttrium compounds. J. Colloid Interface Sci. 194, 398 (1997).CrossRefGoogle ScholarPubMed
2Rogach, A., Susha, A., Caruso, F., Sukhorukov, G., Kornowski, A., Kershaw, S., Mohwald, H., Eychmuller, A., and Weller, H.: Nano- and microengineering: 3-D colloidal photonic crystals prepared from sub- and μm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells. Adv. Mater. 12, 333 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
3Caruso, F., Spasova, M., Salgueirino-Maceira, V., and Liz-Marzán, L.M.: Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. Adv. Mater. 13, 1090 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
4Caruso, F., Lichtenfeld, H., Giersig, M., and Mohwald, H.: Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles. J. Am. Chem. Soc. 120, 8523 (1998).CrossRefGoogle Scholar
5Mulvaney, P., Giersig, M., Ung, T., and Liz-Marzán, L.M.: Direct observation of chemical reactions in silica-coated gold and silver nanoparticles. Adv. Mater. 9, 570 (1997).CrossRefGoogle Scholar
6Fleming, M.S., Mandal, T.K., and Walt, D.R.: Nanosphere-microsphere assembly: Methods for core-shell materials preparation. Chem. Mater. 13, 2210 (2001).CrossRefGoogle Scholar
7Hsu, W.P., Yu, R.C., and Matijević, E.: Paper whiteners. I. Titania coated silica. J. Colloid Interface Sci. 156, 56 (1993).CrossRefGoogle Scholar
8Makarova, O.V., Ostafin, A.E., Miyoshi, H., Norris, J.R. Jr., and Meisel, D.: Adsorption and encapsulation of fluorescent probes in nanoparticles. J. Phys. Chem. B 103, 9080 (1999).CrossRefGoogle Scholar
9Correa-Durate, M.A., Giersig, M., and Liz-Marzán, L.M.: Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chem. Phys. Lett. 286, 497 (1998).CrossRefGoogle Scholar
10Ethiraj, A.S., Hebalkar, N., Kulkarni, S.K., Pascricha, R., Urban, J., Dem, C., Schmitt, M., Kiefer, W., Weinhardt, L., Joshi, S., Fink, R., Heske, C., Kumpf, C., and Umbach, E.: Enhancement of photoluminescence in manganese-doped ZnS nanoparticles due to a silica shell. J. Chem. Phys. 118, 8945 (2003).CrossRefGoogle Scholar
11Velikov, K.P., Moroz, A., and van Blaaderen, A.: Photonic crystals of core-shell colloidal particles. Appl. Phys. Lett. 80, 49 (2002).CrossRefGoogle Scholar
12Alejandro-Arellano, M., Ung, T., Blanco, A., Mulvaney, P., and Liz-Marzán, L.M.: Silica-coated metals and semiconductors. Stabilization and nanostructuring. Pure Appl. Chem. 72, 257 (2000).CrossRefGoogle Scholar
13Liz-Marzán, L.M., Giersig, M., and Mulvaney, P.: Synthesis of nanosized gold-silica core-shell particles. Langmuir 12, 4329 (1996).CrossRefGoogle Scholar
14Caruso, F.: Nanoengineering of particle surfaces. Adv. Mater. 13, 11 (2001).3.0.CO;2-N>CrossRefGoogle Scholar
15Liz-Marzán, L.M., Correa-Durate, M.A., Pastoriza-Santos, I., Mulvaney, P., Ung, T., Giersig, M., and Kotov, N.A.: Nanostructured material, micelles and colloids, in Handbook of Surfaces and Interfaces of Materials, Vol. 3, edited by Nalwa, H.S. (Stanford Scientific Corp., Los Angeles, CA, 2001), p. 189.CrossRefGoogle Scholar
16Xia, H.L. and Tang, F.Q.: Surface synthesis of zinc oxide nanoparticles on silica spheres. Preparation and characterization. J. Phys. Chem. B 107, 9175 (2003).CrossRefGoogle Scholar
17Schuetz, P. and Caruso, F.: Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles. Chem. Mater. 14, 4509 (2002).CrossRefGoogle Scholar
18Hall, S.R., Davis, S.A., and Mann, S.: Cocondensation of organosilica hybrid shells on nanoparticle templates: A direct synthetic route to functionalized core-shell colloids. Langmuir 16, 1454 (2000).CrossRefGoogle Scholar
19Sondi, I., Fedynyshyn, T.H., Sinta, R., and Matijevic, E.: Encapsulation of nanosized silica by in situ polymerization of tert-butyl acrylate monomer. Langmuir 16, 9031 (2000).CrossRefGoogle Scholar
20Jing, X., Ireland, T., Gibbons, C., Barber, D.J., Silver, J., Vecht, A., Fern, G., Trowga, P., and Morton, D.C.: Control of Y2O3:Eu spherical particle phosphor size, assembly properties, and performance for FED and HDTV. J. Electrochem. Soc. 146, 4654 (1999).CrossRefGoogle Scholar
21Vecht, A., Gibbons, C., Davies, D., Jing, X., Marsh, P., Ireland, T.G., Silver, J., and Newport, A.: Engineering phosphors for field emission displays. J. Vac. Sci. Technol., B 17, 750 (1999).CrossRefGoogle Scholar
22Jiang, Y.D., Wang, Z.L., Zhang, F.L., Paris, H.G., and Summers, C.J.: Synthesis and characterization of Y2O3:Eu3+ powder phosphor by a hydrolysis technique. J. Mater. Res. 13, 2950 (1998).CrossRefGoogle Scholar
23Stöber, W., Fink, A., and Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
24Jiang, P., Bertone, J.F., Hwang, K.S., and Colvin, V.L.: Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132 (1999).CrossRefGoogle Scholar
25Yu, M., Lin, J., Fu, J., Zhang, H.J., and Han, Y.C.: Sol–gel synthesis and photoluminescent properties of LaPO4: A (A = Eu3+, Ce3+, Tb3+) nanocrystalline thin films. J. Mater. Chem. 13, 1413 (2003).CrossRefGoogle Scholar
26Yu, M., Wang, Z., Fu, J., Wang, S., Zhang, H.J., and Han, Y.C.: Fabrication, patterning, and optical properties of nanocrystalline YVO4: A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography. Chem. Mater. 14, 2224 (2002).CrossRefGoogle Scholar
27Yu, M., Lin, J., and Fang, J.: Silica spheres coated with YVO4:Eu3+ layers via sol-gel process: A simple method to obtain spherical core-shell phosphors. Chem. Mater. 17, 1783 (2005).CrossRefGoogle Scholar
28Subramanian, M.A., Aravamudan, G., and Rao, G.V. Subba: Oxide pyrochlores—A review. Prog. Solid State Chem. 15, 55 (1983).CrossRefGoogle Scholar
29Digeos, A.A., Valdez, J.A., Sickafus, K.E., Atiq, S., Grimes, R.W., and Boccaccini, A.R.: Glass matrix/pyrochlore phase composites for nuclear wastes encapsulation. J. Mater. Sci. 38, 1597 (2003).CrossRefGoogle Scholar
30Armon, H., Bauminger, E.R., Diamant, A., Nowik, I., and Ofer, S.: Goldanskii effect in quadrupole Mössbauer spectra of the 89 keV gamma ray of 156Gd. Solid State Commun. 15, 543 (1974).CrossRefGoogle Scholar
31Kramer, S.A. and Tuller, H.L.: A novel titanate-based oxygen ion conductor: Gd2Ti2O7. Solid State Ionics 82, 15 (1995).CrossRefGoogle Scholar
32Yamaguchi, S., Kobayashi, K., Abe, K., Yamazaki, S., and Iguchi, Y.: Electrical conductivity and thermoelectric power measurements of Y2Ti2O7 Solid State Ionics 113–115, 393 (1998).CrossRefGoogle Scholar
33Diallo, P.T., Boutinaud, P., Mahiou, R., and Cousseins, J.C.: Luminescence properties of (La,Pr)2Ti2O7. J. Alloys Compd. 275–277, 307 (1998).CrossRefGoogle Scholar
34Harris, M.J., Bramwell, S.T., Zeiske, T., McMorrow, D.F., and King, P.J.C.: Magnetic structures of highly frustrated pyrochlores. J. Magn. Magn. Mater. 177–181, 757 (1998).CrossRefGoogle Scholar
35Langlet, M., Coutier, C., Fick, J., Audier, M., Meffre, W., Jacquier, B., and Rimet, R.: Sol–gel thin film deposition and characterization of a new optically active compound: Er2Ti2O7. Opt. Mater. 16, 463 (2001).CrossRefGoogle Scholar
36Diallo, P.T., Boutinaud, P., and Mahiou, R.: Anti-stokes luminescence and site selectivity in La2Ti2O7: Pr3+. J. Alloys Compd. 341, 139 (2002).CrossRefGoogle Scholar
37Pang, M.L., Lin, J., Fu, J., and Cheng, Z.Y.: Luminescent properties of Gd2Ti2O7: Eu3+ phosphor films prepared by sol–gel process. Mater. Res. Bull. 39, 1607 (2004).CrossRefGoogle Scholar
38Fujihara, S. and Tokumo, K.: Multiband orange-red luminescence of Eu3+ ions based on the pyrochlore-structured host crystal. Chem. Mater. 17, 5587 (2005).CrossRefGoogle Scholar
39Kioul, A. and Mascia, L.: Compatibility of polyimide-silicate ceramers induced by alkoxysilane silane coupling agents. J. Non-Cryst. Solids 175, 169 (1994).CrossRefGoogle Scholar
40Mah, S. Kook and Chung, I.J.: Effects of dimethyldiethoxysilane addition on tetraethylorthosilicate sol-gel process. J. Non-Cryst. Solids 183, 252 (1995).CrossRefGoogle Scholar
41Chen, Y. and Iroh, J.O.: Synthesis and characterization of polyimide/silica hybrid composites. Chem. Mater. 11, 1218 (1999).CrossRefGoogle Scholar
42Méndez-Vivar, J. and Mendoza-Bandala, A.: Spectroscopic study on the early stages of the polymerization of hybrid TEOS-RSi (OR’) (3) sols. J. Non-Cryst. Solids 261, 127 (2000).CrossRefGoogle Scholar
43García-Murillo, A., Luyer, C.L., Dujardin, C., Pedrini, C., and Mugnier, J.: Elaboration and characterization of Gd2O3 waveguiding thin films prepared by sol-gel process. Opt. Mater. 16, 39 (2001).CrossRefGoogle Scholar
44Last, J.T.: Infrared-absorption studies on barium titanate and related materials. Phys. Rev. 105, 1740 (1957).CrossRefGoogle Scholar
45Frindell, K.L., Bartl, M.H., Popitsch, A., and Stucky, G.D.: Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. Angew. Chem., Int. Ed. Engl. 41, 959 (2002).3.0.CO;2-M>CrossRefGoogle ScholarPubMed
46Jana, Y.M., Sengupta, A., and Ghosh, D.: Estimation of single ion anisotropy in pyrochlore Dy2Ti2O7, a geometrically frustrated system, using crystal field theory. J. Magn. Magn. Mater. 248, 7 (2002).CrossRefGoogle Scholar
47Panero, W.R., Stixrude, L., and Ewing, R.C.: First-principles calculation of defect-formation energies in the Y2(Ti,Sn,Zr)2O7 pyrochlore. Phys. Rev. B 70, 054110 (2004).CrossRefGoogle Scholar
48López-Navarrete, E., Orera, V.M., Lázaro, F.J., Carda, J.B., and Ocana, M.: Preparation through aerosols of Cr-doped Y2Sn2O7 (pyrochlore) red-shade pigments and determination of the Cr oxidation state. J. Am. Ceram. Soc. 87, 2108 (2004).CrossRefGoogle Scholar
49Shanon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).CrossRefGoogle Scholar